Skip to main content

Other Surface Imaging Methods with Electrons

  • Chapter
  • First Online:
Surface Microscopy with Low Energy Electrons

Abstract

There are many other surface imaging methods, which are competing or complementary to cathode lens microscopy with slow electrons. Scanning probe microscopy in various imaging modes extends the resolution down to the atomic level and is frequently combined with the imaging methods discussed in this book. Here we make only a short comparison with imaging methods using reflected or emitted electrons, independent of energy and experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, L., Müllerová, I., Faulian, K., Bauer, E.: The scanning low-energy electron microscope: first attainment of diffraction contrast in the scanning electron microscope. Scanning 21, 1–13 (1999)

    Article  Google Scholar 

  2. Frank, L., Hovorka, M., Konvalina, I., Mikmeková, Š., Müllerová, I.: Very low energy scanning electron microscopy. Nucl. Instrum. Meth. Phys. Res. A 645, 46–54 (2011)

    Article  Google Scholar 

  3. Müllerová, L., Hovorka, M., Mika, F., Mikmeková, E., Mikmeková, Š., Pokorná, Z., Frank, L.: Very low energy scanning electron microscopy in nanotechnology. Int. J. Nanotechnol. 9, 695–716 (2012)

    Article  Google Scholar 

  4. Frank, L., Hovorka, M., Mikmeková, Š., Mikmeková, E., Müllerová, I., Pokorná, Z.: Scanning electron microscopy with samples in an electric field. Materials 5, 2731–2756 (2012)

    Article  Google Scholar 

  5. Ichinokawa, T., Ishikawa, Y., Kemmmochi, M., Ikeda, N., Hosokawa, Y.: Low energy scanning electron microscopy combined with low energy electron diffraction. Surf. Sci. 176, 397–414 (1986)

    Article  Google Scholar 

  6. Ichinokawa, T., Hamaguchi, I., Hibino, M.: Surface defects of MoS2 crystals observed by scanning LEED microscopy. Surf. Sci. Lett. 231, L189–L195 (1990)

    Article  Google Scholar 

  7. Cowley, J.M., Albain, J.L., Hembree, G.G., Højlund-Nielsen, P.E., Koch, F.A., Landry, J.D., Shuman, H.: System for reflection electron microscopy and electron diffraction at intermediate energies. Rev. Sci. Instrum. 46, 826–829 (1975)

    Article  Google Scholar 

  8. von Borries, B.: Sublichtmikroskopische Auflösungen bei der Abbildung von Oberflächen im Übermikroskop. Z. Physik 116, 370–378 (1940)

    Article  Google Scholar 

  9. Hsu, T.: Reflection electron microscopy (REM) of vicinal surfaces of fcc metals. Ultramicroscopy 11, 167–172 (1983)

    Article  Google Scholar 

  10. Fert, C.: Obervation directe des surfaces métalliques par réflexion. In: Sjöstrand, F.S., Rhodin, J.A.G. (eds.) Proceedings of the Conference Electron Microscopy, Stockholm 1956, pp. 8–12. Academic, New York, NY (1957)

    Google Scholar 

  11. Müller, P., Métois, J.J.: Low distortion reflection electron microscopy for surface studies. Surf. Sci. 599, 187–195 (2005)

    Article  Google Scholar 

  12. Hsu, T.: Technique of reflection electron microscopy. Microsc. Res. Techn. 20, 318–332 (1992)

    Article  Google Scholar 

  13. Wang, Z.L.: Electron reflection, diffraction and imaging of bulk crystal surfaces in TEM and STEM. Rep. Prog. Phys. 56, 997–1065 (1993)

    Article  Google Scholar 

  14. Yagi, K.: Reflection electron microscopy: studies of surface structures and surface dynamic processes. Surf. Sci. Rep. 17, 305–362 (1993)

    Article  Google Scholar 

  15. Wang, Z.L.: Reflection electron microscopy and spectroscopy for surface analysis. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  16. Latyshev, A.V.: Formation of surface patterns observed by reflection electron microscopy. In: Dehm, G., Howe, J.M., Zweck, J. (eds.) In Situ Electron Microscopy: Applications in Physics, pp. 99–122. Chemistry and Material Science, Weinheim, Wiley-VCH Verlag (2012)

    Chapter  Google Scholar 

  17. Rogilo, D.I., Fedina, L.I., Kosolobov, S.S., Ranguelov, B.S., Latyshev, A.: Critical terrace width for two-dimensional nucleation during Si growth on Si(111)-(7x7) surface. Phys. Rev. Lett. 111, 036105, 4 pages (2013)

    Article  Google Scholar 

  18. Cowley, J.M., Liu, J.: Contrast and resolution in REM, SEM and SAM. Surf. Sci. 298, 456–467 (1993)

    Article  Google Scholar 

  19. Liu, J., Cowley, J.M.: Scanning reflection electron microscopy and associated techniques for surface studies. Ultramicroscopy 48, 381–416 (1993)

    Article  Google Scholar 

  20. Isu, T., Watanabe, A., Hata, M., Katayama, Y.: In-situ microscopic observation of GaAs surfaces during molecular beam epitaxy and metalorganic molecular beam epitaxy by scanning microprobe reflection high energy electron diffraction. J. Cryst. Growth 100, 433–438 (1990)

    Article  Google Scholar 

  21. Watanabe, H., Ichikawa, M.: Development of a multifunctional surface analysis system based on a nanometer scale scanning electron beam: combination of ultrahigh vacuum-scanning electron microscopy, scanning reflection electron microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Rev. Sci. Instrum. 67, 4185–4190 (1996)

    Article  Google Scholar 

  22. Maruno, S., Nakahara, H., Fujita, S., Watanabe, H., Kusumi, Y., Ichikawa, M.: A combined apparatus of scanning reflection electron microscope and scanning tunneling microscope. Rev. Sci. Instrum. 68, 116–119 (1997)

    Article  Google Scholar 

  23. Venables, J.A.: An UHV SEM for in-situ deposition and surface studies. In: Venables, J.A. (ed.) Developments in Electron Microscopy and Analysis, pp. 23–26. Academic, London (1976)

    Google Scholar 

  24. Hartig, K., Janssen, A.P., Venables, J.A.: Nucleation and growth in the system Ag/Mo(100): a comparison of UHV-SEM and AES/LEED observations. Surf. Sci. 74, 69–78 (1978)

    Article  Google Scholar 

  25. Venables, J.A., Janssen, A.P., Akhter, P., Derrien, J., Harland, C.J.: Surface studies in a UHV field emission gun scanning electron microscope. J. Microsc. 118, 351–365 (1980)

    Article  Google Scholar 

  26. Homma, Y., Finnie, P., Uwaha, M.: Morphological instability of atomic steps observed on Si(111) surfaces. Surf. Sci. 492, 125–136 (2001)

    Article  Google Scholar 

  27. Pavlovska, A., Faulian, K., Bauer, E.: Surface roughening and surface melting in the high temperature equilibrium shape of small Pb crystals. Surf. Sci. 221, 233–243 (1989)

    Article  Google Scholar 

  28. Pavlovska, A., Dobrev, D., Bauer, E.: Orientation dependence of the quasi-liquid layer on tin and indium crystals. Surf. Sci. 314, 341–352 (1994)

    Article  Google Scholar 

  29. Pavlovska, A., Dobrev, D., Bauer, E.: Facet growth of spherical lead crystals. Surf. Sci. 326, 101–112 (1995)

    Article  Google Scholar 

  30. Unguris, J.: Scanning electron microscopy with polarization analysis (SEMPA) and its applications. In: de Graef, M., Zyu, Y. (eds.) Magnetic Imaging and its Applications to Materials 2001, pp. 167–193. Academic, San Diego, CA (2001)

    Chapter  Google Scholar 

  31. Allenspach, R.: Spin-polarized scanning electron microscopy. In: Zhu, Y. (ed.) Modern Techniques for Characterizing Magnetic Materials, pp. 327–359. Kluwer Academic Publishers, Boston, MA (2005)

    Google Scholar 

  32. Oepen, H.P., Hopster, H.: SEMPA studies of thin films, structures and exchange coupled layers. In: Hopster, H., Oepen, H.P. (eds.) Magnetic Microscopy of Nanostructures, pp. 137–167. Springer, Berlin (2005)

    Chapter  Google Scholar 

  33. Oepen, H.P., Frömter, R.: Scanning electron microscopy with polarisation analysis. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, vol. 3, pp. 1488–1509. John Wiley & Sons, Chichester (2007)

    Google Scholar 

  34. Frömter, R., Hankemeier, S., Oepen, H.P., Kirschner, J.: Optimizing a low-energy electron diffraction spin-polarization analyzer for imaging of magnetic surface structures. Rev. Sci. Instrum. 82, 033704, 11 pages (2011)

    Article  Google Scholar 

  35. Koike, K.: Spin-polarized scanning electron microscopy. Microscopy 62, 177–191 (2013)

    Article  Google Scholar 

  36. Trassin, M., Clarkson, J.D., Bowden, S.R., Liu, J., Heron, J., Paull, R.J., Arenholz, E., Pierce, D.T., Unguris, J.: Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys. Rev. B 87, 134426, 6 pages (2013)

    Article  Google Scholar 

  37. Rotermund, H.H., Ertl, G., Sesselmann, W.: Scanning photoemission microscopy of surfaces. Surf. Sci. 217, L383–L390 (1989)

    Article  Google Scholar 

  38. Munakata, T., Masuda, T., Ueno, N., Abdureyim, A., Sonoda, Y.: Time-resolved photoemission microspectroscopy based on fs-VUV laser light. Surf. Sci. 507–510, 434–440 (2002)

    Article  Google Scholar 

  39. Yamamoto, R., Yamamoto, I., Mikamori, M., Yamada, T., Miyakubo, K., Munakata, T.: Lateral inhomogeneity of unoccupied states for PbPc films. Surf. Sci. 605, 982–986 (2011)

    Article  Google Scholar 

  40. Günther, S., Kaulich, B., Gregoratti, L., Kiskinova, M.: Photoelectron microscopy and applications in surface and materials science. Prog. Surf. Sci. 70, 187–260 (2002)

    Article  Google Scholar 

  41. Barinov, A., Dudin, P., Gregoratti, L., Locatelli, A., Menteş, T.O., Niño, M.A., Kiskinova, M.: Synchrotron-based photoelectron microscopy. Nucl. Instrum. Meth. Phys. Res. A 601, 195–202 (2009)

    Article  Google Scholar 

  42. Bartolome, J., Maestre, D., Amati, M., Cremades, A., Piqueras, J.: Indium zinc oxide pyramids with pinholes and nanopipes. J. Phys. Chem. C 115, 8354–8360 (2011)

    Article  Google Scholar 

  43. Barinov, A., Gregoratti, L., Dudin, P., La Rosa, S., Kiskinova, M.: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding. Adv. Mater. 21, 1916–1920 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, E. (2014). Other Surface Imaging Methods with Electrons. In: Surface Microscopy with Low Energy Electrons. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0935-3_8

Download citation

Publish with us

Policies and ethics