Skip to main content

Instrumentation

  • Chapter
  • First Online:
Surface Microscopy with Low Energy Electrons
  • 1748 Accesses

Abstract

This chapter describes the instruments used in emission and reflection microscopy starting from the simplest configuration to the most sophisticated instruments. These include aberration-corrected microscopes and microscopes which allow spectroscopic and spin-resolved imaging; time-resolved imaging too will be discussed briefly. Next, the components used in them are discussed: objective lens and other axial symmetric lenses, beam separators, electron mirrors, aberration correction, energy filters, Wien filters, spin polarizers, stigmators/deflectors, apertures, photon sources, electron sources, image detection, and specimen manipulation. Other instrumentation aspects such as vacuum generation, airlock and preparation chamber, electronics, and computer control/operational procedures will only briefly be touched upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonner, B.P., Harp, G.R.: Photoelectron microscopy with synchrotron radiation. Rev. Sci. Instrum. 59, 853–858 (1988)

    Google Scholar 

  2. Tonner, B.P., Harp, G.R.: Photoyield spectromicroscopy of silicon surfaces using monochromatic synchrotron radiation. J. Vac. Sci. Technol. A 7, 1–4 (1989)

    Google Scholar 

  3. Tonner, B.P., Harp, G.R., Koranda, S.F., Zhang, J.: An electrostatic microscope for synchrotron radiation x-ray absorption microspectroscopy. Rev. Sci. Instrum. 63, 564–568 (1992)

    Google Scholar 

  4. Bethge, H., Klaua, M.: Photo-emission electron microscopy of work function changes. Ultramicroscopy 11, 207–214 (1983)

    Google Scholar 

  5. Engel, W., Kordesch, M.E., Rotermund, H.H., Kubala, S., von Oertzen, A.: A UHV-compatible photoelectron emission microscope for applications in surface science. Ultramicroscopy 36, 148–153 (1991)

    Google Scholar 

  6. www.staibinstruments.com/.

  7. Grzelakowski, K., Bauer, E.: A flange-on type low energy electron microscope. Rev. Sci. Instrum. 67, 742–747 (1996)

    Google Scholar 

  8. Swiech, W., Fecher, G.H., Ziethen, C., Schmidt, O., Schönhense, G., Grzelakowski, K., Schneider, C.M., Frömter, R., Oepen, H.P., Kirschner, J.: Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J. Electron. Spectros. Relat. Phenomena 84, 171–188 (1997)

    Google Scholar 

  9. www.focus-gmbh.com.

  10. www.elmitec.de.

  11. Griffith, O.H., Rempfer, G.F., Lesch, G.H.: A High Vacuum Photoelectron Microscope for the Study of Biological Specimens. Scanning Electron Microscopy, vol. II, pp. 123–130. SEM Inc., AMF O’Hare, Chicago, IL (1981)

    Google Scholar 

  12. Rempfer, G.F., Skoczylas, W.P., Griffith, O.H.: Design and performance of a high-resolution photoelectron microscope. Ultramicroscopy 36, 196–221 (1991)

    Google Scholar 

  13. Griffith, O.H., Lesch, G.H., Rempfer, G.F., Birrell, G.B., Burke, C.A., Schlosser, D.W., Mallon, M.H., Lee, G.B., Stafford, R.G., Jost, P.C., Marriott, T.B.: Photoelectron microscopy: a new approach to mapping organic and biological surfaces. Proc. Natl. Acad. Sci. U. S. A. 69, 561–565 (1972)

    Google Scholar 

  14. Engel, W.: Entwicklung eines Emisssionsmikroskops höher Auflösung mit photoelektrischer, kinetischer und thermischer Elektronenauslösung. Ph.D. Thesis (1968)

    Google Scholar 

  15. Wegmann, L.: The photo-emission electron microscope: its technique and applications. J. Microsc. 96, 1–23 (1972)

    Google Scholar 

  16. De Stasio, G., Capozi, M., Lorusso, G.F., Baudat, P.A., Droubay, T.C., Perfetti, P., Margaritondo, G., Tonner, B.P.: MEPHISTO: performance tests of a novel synchrotron imaging photoelectron spectromicroscope. Rev. Sci. Instrum. 69, 2062–2066 (1998)

    Google Scholar 

  17. Watts, R.N., Liang, S., Levine, Z.H., Lucatorto, T.B., Polack, F., Scheinfein, M.R.: A transmission x-ray microscope based on secondary-electron imaging. Rev. Sci. Instrum. 68, 3464–3476 (1997)

    Google Scholar 

  18. Huang, L.Y.: Röntgen-Bildwandler-Mikroskopie. Z. Phys. 149, 225–253 (1957)

    Google Scholar 

  19. Anders, S., Padmore, H.A., Duarte, R.M., Renner, T., Stammler, T., Scholl, A., Scheinfein, M.R., Stöhr, J., Séve, L., Sinkovic, B.: Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 70, 3973–3981 (1999)

    Google Scholar 

  20. Veneklasen, L.H.: Design of a spectroscopic low-energy electron microscope. Ultramicroscopy 36, 76–90 (1991)

    Google Scholar 

  21. Bauer, E.: Photoelectron spectromicroscopy: present and future. J. Electron. Spectros. Relat. Phenomena 114–116, 975–987 (2001)

    Google Scholar 

  22. Bauer, E.: Cathode lens electron microscopy: past and future. J. Phys. Condens. Matter 21, 314001 (2009)

    Google Scholar 

  23. Bauer, E.: Low energy electron reflection microscopy. In: Breese, S.S.J. (ed.) Fifth Intern. Congr. Electron Microscopy 1962, p. D-11. Academic, New York (1962)

    Google Scholar 

  24. Turner, G., Bauer, E.: Design features of an ultrahigh-vacuum electron microscope. In: 22nd Ann. Meeting EMSA, Detroit 1964. J. Appl. Phys., p. 3080 (1964)

    Google Scholar 

  25. Bauer, E.: LEEM and UHV-PEEM: a retrospective. Ultramicroscopy 119, 18–23 (2012)

    Google Scholar 

  26. Telieps, W.: Ein Ultrahochvakuum-Elektronenmikroskop zur Abbildung von Oberflächen mit langsamen reflektierten und emittierten Elektronen. Ph.D. Thesis, Technische Universität Clausthal (1983)

    Google Scholar 

  27. Telieps, W., Bauer, E.: An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy 17, 57–66 (1985)

    Google Scholar 

  28. Tromp, R.M., Reuter, M.C.: Design of a new photo-emission/low-energy electron microscope for surface studies. Ultramicroscopy 36, 99–106 (1991)

    Google Scholar 

  29. Liebl, H., Senftinger, B.: Low-energy electron microscope of novel design. Ultramicroscopy 36, 91–98 (1991)

    Google Scholar 

  30. Kolařík, V., Vašina, R., Mynář, M., Bejdák, T.: X-ray photoemission and low energy electron microscope. In: Frank, L., Čiampor, F. (eds.) 12th Eur. Congr. Electron Microscopy (EUREM 12), Brno 2000, pp. I 181–I 182. Czech. Soc. Electron Microscopy, Brno (2000)

    Google Scholar 

  31. Bauer, E., Koziol, C., Lilienkamp, G., Schmidt, T.: Spectromicroscopy in a low energy electron microscope. J. Electron. Spectros. Relat. Phenomena 84, 201–209 (1997)

    Google Scholar 

  32. Tromp, R.M., Mankos, M., Reuter, M.C., Ellis, A.W., Copel, M.: A new low energy electron microscope. Surf. Rev. Lett. 5, 1189–1197 (1998)

    Google Scholar 

  33. www.specs.de.

  34. Tsuno, K.: Simulation of a Wien Filter as beam separator in a low energy electron microscope. Ultramicroscopy 55, 127–140 (1994)

    Google Scholar 

  35. Sakai, Y., Kato, M., Masuda, S., Harada, Y., Ichinokawa, T.: Dynamical change of step and domain-structures on the Si(111) surface with heat-treatment observed by a low energy electron microscope. Surf. Sci. 336, 295–302 (1995)

    Google Scholar 

  36. Sakai, Y., Kato, M., Masuda, S., Harada, Y., Ichinokawa, T.: Development of a low energy electron microscope with an energy analyzer. Surf. Rev. Lett. 5, 1199–1211 (1998)

    Google Scholar 

  37. Griffith, O.H., Hedberg, K.K., Desloge, D., Rempfer, G.F.: Low-energy electron microscopy (LEEM) and mirror electron microscopy (MEM) of biological specimens: preliminary results with a novel beam separator system. J. Microsc. 168, 249–258 (1992)

    Google Scholar 

  38. Skoczylas, W.P., Rempfer, G.F., Griffith, O.H.: A proposed modular imaging system for photoelectron and electron probe microscopy with aberration correction, and for mirror microscopy and low-energy electron microscopy. Ultramicroscopy 36, 252–261 (1991)

    Google Scholar 

  39. Skoczylas, W.P., Rempfer, G.F., Griffith, O.H.: Electron optical benches for in-line and branched systems. A new bench designed for mirror-based aberration correction and low energy electron microscopy. Rev. Sci. Instrum. 65, 3183–3193 (1994)

    Google Scholar 

  40. Adamec, P., Bauer, E., Lencová, B.: Compact low-energy electron microscope for surface imaging. Rev. Sci. Instrum. 69, 3583–3787 (1998)

    Google Scholar 

  41. Adamec, P.: Compact Low Energy Electron Microscope for Surface Imaging. Ph.D. thesis, Masaryk University, Brno, Czech Republic (1997)

    Google Scholar 

  42. Mankos, M., Adler, D., Veneklasen, L., Munro, E.: Electron optics for high throughput low energy electron microscopy. Surf. Sci. 601, 4733–4741 (2007)

    Google Scholar 

  43. Mankos, M., Spasov, V., Han, L., Kojima, S., Jiang, X., Harb, S., Grella, L., Czarnik, C.: Low energy electron microscopy for semiconductor applications. In: Adler, D.L., Bauer, E., Kellogg, G.L., Scholl, A. (eds.) Proc. MRS Spring Meeting: Symposium Advances and Applications of Surface Electron Microscopy, San Francisco 2008. MRS Proceedings, pp. W03–01 (2008)

    Google Scholar 

  44. Mankos, M., Adler, D., Veneklasen, L., Munro, E.: Electron optics for low energy electron microscopy. Phys. Procedia 1, 485–504 (2008)

    Google Scholar 

  45. Mankos, M., Spasov, V., Munro, E.: Principles of dual-beam low-energy electron microscopy. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 161, pp. 1–53. Academic, Burlington (2010)

    Google Scholar 

  46. Mankos, M.: Electron optics for dual-beam low energy electron microscopy. Nucl. Instrum. Methods Phys. Res. A 645, 35–40 (2011)

    Google Scholar 

  47. Mankos, M., Shadman, K., N’Diaye, A.T., Schmid, A.K., Persson, H.H.J., Davis, R.W.: Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis. J. Vac. Sci. Technol. B 30, 06F402, 12 pages (2012)

    Google Scholar 

  48. Mankos, M., Shadman, K.: A monochromatic, aberration-corrected, dual-beam low energy electron microscope. Ultramicroscopy 130, 13–28 (2013)

    Google Scholar 

  49. Shimakura, T., Takahashi, Y., Sugaya, M., Ohnishi, T., Hasegawa, M., Ohta, H.: Mirror electron microscope for inspecting nanometer-sized defects in magnetic media. Microelectron. Eng. 85, 1811–1814 (2008)

    Google Scholar 

  50. Kleinschmidt, H., Bostanjoglo, O.: Pulsed mirror electron microscope: a fast near-surface imaging probe. Rev. Sci. Instrum. 72, 3898–3901 (2001)

    Google Scholar 

  51. Scherzer, O.: Ueber einige Fehler von Elektronenlinsen. Z. Phys. 101, 593–693 (1936)

    Google Scholar 

  52. Scherzer, O.: Sphärische und chromatische Korrektur von Elektronen-Linsen. Optik 2, 114–132 (1947)

    Google Scholar 

  53. Hawkes, P.W.: Aberration correction past and present. Philos. Trans. R. Soc. Lond. A 367, 3637–3664 (2009)

    Google Scholar 

  54. Rose, H.H.: Historical aspects of aberration correction. J. Electron Microsc. 58(3), 77–85 (2009)

    Google Scholar 

  55. Könenkamp, R., Jones, T., Elstner, J., Word, R.C., Rempfer, G., Dixon, T., Almaraz, L., Skoczylas, W.: Image properties in an aberration-corrected photoemission electron microscope. Phys. Procedia 1, 505–511 (2008)

    Google Scholar 

  56. Könenkamp, R., Word, R.C., Rempfer, G.F., Dixon, T., Almaraz, L., Jones, T.: 5.4 nm Spatial resolution in biological photoemission electron microscopy. Ultramicroscopy 110, 899–902 (2010)

    Google Scholar 

  57. Rose, H., Preikszas, D.: Outline of a versatile corrected LEEM. Optik 92, 31–44 (1992)

    Google Scholar 

  58. Fink, R., Weiss, M.R., Umbach, E., Preikszas, D., Rose, H., Spehr, R., Hartel, P., Engel, W., Degenhardt, R., Wichtendahl, R., Kuhlenbeck, H., Erlebach, W., Ihmann, K., Schlogl, R., Freund, H.J., Bradshaw, A.M., Lilienkamp, G., Schmidt, T., Bauer, E., Benner, G.: SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II. J. Electron. Spectros. Relat. Phenomena 84, 231–250 (1997)

    Google Scholar 

  59. Wichtendahl, R., Fink, R., Kuhlenbeck, H., Preikszas, D., Rose, H., Spehr, R., Hartel, P., Engel, W., Schlogl, R., Freund, H.J., Bradshaw, A.M., Lilienkamp, G., Schmidt, T., Bauer, E., Benner, G., Umbach, E.: SMART: an aberration-corrected XPEEM/LEEM with energy filter. Surf. Rev. Lett. 5, 1249–1256 (1998)

    Google Scholar 

  60. Hartel, P., Preikszas, D., Spehr, R., Müller, H., Rose, H.: Mirror corrector for low-voltage electron microscopes. In: Hawkes, P.W., Kazan, B. (eds.) Advances in Imaging and Electron Physics, vol. 120, pp. 41–133. Academic, San Diego, CA (2002)

    Google Scholar 

  61. Schmidt, T., Marchetto, H., Levesque, P.L., Groh, U., Maier, F., Preikszas, D., Hartel, P., Spehr, R., Lilienkamp, G., Engel, W., Fink, R., Bauer, E., Rose, H., Umbach, E., Freund, H.J.: Double aberration correction in a low-energy electron microscope. Ultramicroscopy 110, 1358–1361 (2010)

    Google Scholar 

  62. Feng, J., Macdowell, A.A., Duarte, R., Doran, A., Forest, E., Kelez, N., Marcus, M., Munson, D., Padmore, H., Petermann, K., Raoux, S., Robin, D., Scholl, A., Schleuter, R., Schmidt, P., Stohr, J., Wan, W., Wei, D.H., Wu, Y.: An aberration-corrected photoemission electron microscope at the advanced light source. In: Proc. Eighth International Conference on Synchrotron Radiation Instrumentation 2003. AIP Conf. Proc., vol. 705, pp.1070–1073 (2004)

    Google Scholar 

  63. Feng, J., Forest, E., Macdowell, A.A., Marcus, M., Padmore, H., Raoux, S., Robin, D., Scholl, A., Schlueter, R., Schmidt, P., Stohr, J., Wan, W., Wei, D.H., Wu, Y.: An x-ray photoemission electron microscope using an electron mirror aberration corrector for the study of complex materials. J. Phys. Condens. Matter 17, S1339–S1350 (2005)

    Google Scholar 

  64. Feng, J., Scholl, A.: Photoemission electron microscopy (PEEM). In: Hawkes, P.W., Spence, J.C.H. (eds.) Science of Microscopy, vol. 1, pp. 657–695. Springer, New York (2007)

    Google Scholar 

  65. MacDowell, A.A., Feng, J., DeMello, A., Doran, A., Duarte, R., Forest, E., Kelez, N., Marcus, M.A., Miller, T., Padmore, H.A., Raoux, S., Robin, D., Scholl, A., Schlueter, R., Schmid, P., Stöhr, J., Wan, W., Wei, D.H., Wu,Y.: Progress on PEEM3—an aberration corrected XRay photoemission electron microscope at the ALS. In: Choi, J.-Y., Rah, S. (eds.) Proc. Ninth International Conference on Synchrotron Radiation Instrumentation Korea 2006. AIP Conf. Proc., vol. 879, pp. 1341–1344. New York (2007)

    Google Scholar 

  66. Tromp, R.M., Hannon, J.B., Ellis, A.W., Wan, W., Berghaus, A., Schaff, O.: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852–861 (2010)

    Google Scholar 

  67. Tsuno, K., Yasue, T., Koshikawa, T.: Design of a mirror aberration corrector and a beam separator for LEEM. Appl. Surf. Sci. 256, 1035–1041 (2009)

    Google Scholar 

  68. Schönhense, G., Spiecker, H.: Correction of chromatic and spherical aberration in electron microscopy utilizing the time structure of pulsed excitation sources. J. Vac. Sci. Technol. B 20, 2526–2534 (2002)

    Google Scholar 

  69. Schönhense, G., Elmers, H.J.: PEEM with high time resolution—imaging of transient processes and novel concepts of chromatic and spherical aberration correction. Surf. Interface Anal. 38, 1578–1587 (2006)

    Google Scholar 

  70. Ikuta, T.: Image restoration in coherent imaging system involving spherical aberration. J. Electron Microsc. 38, 415–422 (1989)

    Google Scholar 

  71. Koshikawa, T., Shimizu, H., Amakawa, R., Ikuta, T., Yasue, T., Bauer, E.: A new aberration correction method for photoemission electron microscopy by means of moving focus. J. Phys. Condens. Matter 17, S1371–S1380 (2005)

    Google Scholar 

  72. Möllenstedt, G., Gruner, H.: Monochromatisation of electron beams and improvement of emission images by means of an electron mirror. Optik 27, 602–604 (1968)

    Google Scholar 

  73. Gruner, H., Gauckler, K.H., Möllenstedt, G.: Monochromatisierung von Elektronenstrahlen mittels Spiegelung und ihre Anwendung in der Emissions-Mikroskopie. Optik 33, 255–269 (1971)

    Google Scholar 

  74. Merkel, M., Escher, M., Settemeyer, J., Funnemann, D., Oelsner, A., Ziethen, C., Schmidt, O., Klais, M., Schönhense, G.: Microspectroscopy and spectromicroscopy with photoemission electron microscopy using a new kind of imaging energy filter. Surf. Sci. 480, 196–202 (2001)

    Google Scholar 

  75. Weber, N.B., Escher, M., Merkel, M., Oelsner, A., Schönhense, G.: Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art. J. Phys. Conf. Ser. 100, 072031, 4 pages (2008)

    Google Scholar 

  76. Spiecker, H., Schmidt, O., Ziethen, C., Menke, D., Kleineberg, U., Ahuja, R.C., Merkel, M., Heinzmann, U., Schönhense, G.: Time-of-flight photoelectron emission microscopy TOF-PEEM: first results. Nucl. Instrum. Methods Phys. Res. A 406, 499–506 (1998)

    Google Scholar 

  77. Oelsner, A., Schmidt, O., Schicketanz, M., Klais, M., Schönhense, G., Mergel, V., Jagutzki, O., Schmidt-Böcking, H.: Microspectroscopy and imaging using a delay line detector in time-of-flight photoemission microscopy. Rev. Sci. Instrum. 72, 3968–3974 (2001)

    Google Scholar 

  78. Schönhense, G., Oelsner, A., Schmidt, O., Fecher, G.H., Mergel, V., Jagutzki, O., Schmidt-Böcking, H.: Time-of-flight photoemission electron microscopy—a new way to chemical surface analysis. Surf. Sci. 480, 180–187 (2001)

    Google Scholar 

  79. Oelsner, A., Krasyuk, A., Fecher, G.H., Schneider, C.M., Schönhense, G.: Image enhancement in photoemission electron microscopy by means of imaging time-of-flight analysis. J. Electron. Spectros. Relat. Phenomena 137–140, 757–761 (2004)

    Google Scholar 

  80. Schönhense, G., Elmers, H.J., Nepijko, S.A., Schneider, C.M.: Time-resolved photoemission electron microscopy. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 142, pp. 159–323. Academic, London (2006)

    Google Scholar 

  81. Oelsner, A., Rohmer, M., Schneider, C., Bayer, D., Schönhense, G., Aeschlimann, M.: Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations. J. Electron. Spectros. Relat. Phenomena 178, 317–330 (2010)

    Google Scholar 

  82. Lin, J., Weber, N., Wirth, A., Chew, S.H., Escher, M., Merkel, M., Kling, M.F., Stockman, M.I., Krausz, F., Kleineberg, U.: Time of flight-photoemission electron microscope for ultrahigh spatiotemporal probing of nanoplasmonic optical fields. J. Phys. Condens. Matter 21, 314005, 7 pages (2009)

    Google Scholar 

  83. Castaing, R., Henry, L.: Filtrage magnétic des vitesses en microscopie électronique. C. R. Acad. Sci. Paris 255, 76–86 (1962)

    Google Scholar 

  84. Reimer, L., Fromm, I., Rennekamp, R.: Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a transmission electron microscope. Ultramicroscopy 24, 339–354 (1988)

    Google Scholar 

  85. Lanio, S., Rose, H., Krahl, D.: Test and improvement design of a corrected imaging magnetic energy filter. Optik 73, 56–68 (1986)

    Google Scholar 

  86. Rose, H., Krahl, D.: Electron optics of imaging energy filters. In: Reimer, L. (ed.) Energy-Filtering Transmission Electron Microscopy, vol. 71, pp. 43–148. Springer, Berlin (1995)

    Google Scholar 

  87. Cazaux, J.: Microscope photoélectronique pour l’analyse chimique des surfaces. Rev. Phys. Appl. (Paris) 8, 371–381 (1973)

    Google Scholar 

  88. Bauer, E., Franz, T., Koziol, C., Lilienkamp, G., Schmidt, T.: Recent advances in LEEM/PEEM for structural and chemical analysis. In: Rosei, R. (ed.) Proc. NATO Workshop on Chemical, Structural and Electronic Analysis of Heterogeneous Surfaces on Nanometer Scale, Trieste 1995, pp. 75–91. Kluwer, Dordrecht (1997)

    Google Scholar 

  89. Lilienkamp, G., Koziol, C., Schmidt, T., Bauer, E.: Cathode lens spectromicroscopy with a low-energy electron microscope. In: Thieme, J., Schmahl, G., Rudolph, D., Umbach, E. (eds.) X-Ray Microscopy and Spectromicroscopy, pp. III 25–III 34. Springer, Berlin (1998)

    Google Scholar 

  90. Schmidt, T., Heun, S., Slesak, J., Diaz, J., Prince, K.C., Lilienkamp, G., Bauer, E.: SPELEEM: combining LEEM and spectroscopic imaging. Surf. Rev. Lett. 5, 1287–1296 (1998)

    Google Scholar 

  91. Tonner, B.P., Dunham, D., Droubay, T., Pauli, M.: A photoemission microscope with a hemispherical capacitor energy filter. J. Electron. Spectros. Relat. Phenomena 84, 211–229 (1997)

    Google Scholar 

  92. Liebl, H.: Stigmatic sector-field energy analyzer without second-order angular image aberrations. Nucl. Instrum. Methods Phys. Res. A 292, 537–540 (1990)

    Google Scholar 

  93. Grzelakowski, K.: Electron optical aspects of the dual-emission electron microscope. J. Phys. Condens. Matter 17, S1351–S1362 (2005)

    Google Scholar 

  94. Escher, M., Weber, N., Merkel, M., Ziethen, C., Bernhard, P., Schönhense, G., Schmidt, S., Forster, F., Reinert, F., Krömker, B., Funnemann, D.: NanoESCA: a novel energy filter for imaging x-ray photoemission spectroscopy. J. Phys. Condens. Matter 17, S1329–S1338 (2005)

    Google Scholar 

  95. Krömker, B., Escher, M., Funnemann, D., Hartung, D., Engelhard, H., Kirschner, J.: Development of a momentum microscope for time resolved band structure imaging. Rev. Sci. Instrum. 79, 053701, 7pp (2008)

    Google Scholar 

  96. www.omicron.de.

  97. Rose, H.: The retarding Wien filter as a high performance imaging filter. Optik 77, 26–34 (1987)

    Google Scholar 

  98. Tsuno, K.: Electron-optical analysis of a retarding Wien filter for electron spectroscopic imaging. Rev. Sci. Instrum. 64, 659–666 (1993)

    Google Scholar 

  99. Marx, G.K.L., Gerheim, V., Schönhense, G.: Multipole WIEN-filter for a high-resolution X-PEEM. J. Electron. Spectros. Relat. Phenomena 84, 251–261 (1997)

    Google Scholar 

  100. Tromp, R.M., Hannon, J.B., Fujikawa, Y., Berghaus, A., Schaff, O.: A simple energy filter for LEEM/PEEM instruments. J. Phys. Condens. Matter 21, 314007, 13 pages (2009)

    Google Scholar 

  101. Yamamoto, N., Jin, X.G., Mano, A., Ujihara, T., Takeda, Y., Okumi, S., Nakanishi, T., Yasue, T., Koshikawa, T., Ohshima, T., Saka, T., Horinaka, H.: Status of the high brightness polarized electron source using transmission photocathode. J. Phys. Conf. Ser. 298, 012017, 6 pages (2011)

    Google Scholar 

  102. Bauer, E.: Spin-polarized low energy electron microscopy. In: Amelinckx, S., Van Dyck, D., Van Landuyt, J.F., Van Tendeloo, G. (eds.) Handbook of Microscopy, pp. 751–759. VCH Verlagsges, Weinheim (1997)

    Google Scholar 

  103. Duden, T., Bauer, E.: A compact electron spin polarization manipulator. Rev. Sci. Instrum. 66, 2861–2864 (1995)

    Google Scholar 

  104. Grzelakowski, K., Duden, T., Bauer, E., Poppa, H., Chiang, S.: A new surface microscope for magnetic imaging. IEEE Trans. Magn. 30, 4500–4502 (1994)

    Google Scholar 

  105. Bauer, E.: SPLEEM. In: Hopster, H., Oepen, H.P. (eds.) Magnetic Microscopy of Nanostructures, pp. 111–136. Springer, Berlin (2005)

    Google Scholar 

  106. Bauer, E.: Spin-polarized low-energy electron microscopy. In: Van Tandeloo, G., Van Dyck, D., Pennycook, S. (eds.) Handbook of Nanoscopy, pp. 697–707. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  107. Scheinfein, M.R.: Second order transfer matrixes for inhomogeneous field Wien filters including spin-precession. Optik 82, 99–113 (1989)

    Google Scholar 

  108. Kohashi, T., Matsuyama, H., Koike, K.: A spin rotator for detecting all three magnetization vector components by spin-polarized scanning electron microscopy. Rev. Sci. Instrum. 66, 5537–5543 (1995)

    Google Scholar 

  109. Kohashi, T., Konoto, M., Koike, K.: A spin rotator for spin-polarized scanning electron microscopy. Rev. Sci. Instrum. 75, 2003–2007 (2004)

    Google Scholar 

  110. Kronast, F., Schlichting, J., Radu, F., Mishra, S.K., Noll, T., Dürr, H.A.: Spin-resolved photoemission microscopy and magnetic imaging in applied magnetic fields. Surf. Interface Anal. 42, 1532–1536 (2010)

    Google Scholar 

  111. Tusche, C., Ellguth, M., Ünal, A.A., Chiang, C.-T., Winkelmann, A., Krasyuk, A., Hahn, M., Schönhense, G., Kirschner, J.: Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Appl. Phys. Lett. 99, 032505, 3 pages (2011)

    Google Scholar 

  112. Lencová, B.: Electrostatic lenses. In: Orloff, J. (ed.) Handbook of Charged Particle Optics, pp. 161–208. CRC Press, Boca Raton, FL (2008)

    Google Scholar 

  113. Rempfer, G.F., Nadakavukaren, K.K., Griffith, O.H.: Topographical effects in emission microscopy. Ultramicroscopy 5, 437–448 (1980)

    Google Scholar 

  114. Recknagel, A.: Theorie des elektrischen Elektronenmikroskops für Selbststrahler. Z. Phys. 117, 689–708 (1941)

    Google Scholar 

  115. Recknagel, A.: Zur Theorie des Elektronenmikroskops für Selbststrahler. Jahrbuch der AEG-Forschung 9, 1–7 (1942)

    Google Scholar 

  116. Boersch, H.: Die Verbesserung des Auflösungsvermögens im Emissions-Elektronenmikroskop. Z. Tech. Phys. 23, 129–130 (1942)

    Google Scholar 

  117. Bauer, E.: Optical properties of the uniform electric field. J. Appl. Phys. 35, 3079 (1964)

    Google Scholar 

  118. Bauer, E.: The resolution of the low energy electron reflection microscope. Ultramicroscopy 17, 51–56 (1985)

    Google Scholar 

  119. Cruise, D.R., Bauer, E.: Optical properties of a typical electrostatic immersion lens. J. Appl. Phys. 35, 3080 (1964)

    Google Scholar 

  120. Davisson, C.J., Calbick, C.J.: Electron lenses. Phys. Rev. 42, 580 (1932)

    Google Scholar 

  121. Lenc, M., Müllerova, I.: Electron optical properties of a cathode lens. Ultramicroscopy 41, 411–417 (1992)

    Google Scholar 

  122. Lenc, M., Müllerova, I.: Optical properties and axial aberration coefficients of the cathode lens in combination with a focusing lens. Ultramicroscopy 45, 159–162 (1992)

    Google Scholar 

  123. Wang, Y.L., Lai, M.Y., Shao, Z.: On the optical properties of an electrostatic retarding field lens. J. Vac. Sci. Technol. A 11, 406–411 (1993)

    Google Scholar 

  124. Tromp, R.M., Wan, W., Schramm, S.M.: Aberrations of the cathode objective lens up to fifth order. Ultramicroscopy 119, 33–39 (2011)

    Google Scholar 

  125. Baker, P.O.: Automatic electron trajectory plotting using the electrolytic tank analogue. Br. J. Appl. Phys. 5, 191–195 (1954)

    Google Scholar 

  126. Pizer, H.I., Yates, J.G., Sander, K.F.: An automatic electron trajectory tracer. J. Electron. Control 2, 65–86 (1965)

    Google Scholar 

  127. Liebmann, G.: The field distribution in asymmetrical magnetic electron lenses. Proc. Phys. Soc. B 68, 679–681 (1955)

    Google Scholar 

  128. Rempfer, G.F.: Unipotential electrostatic lenses: paraxial properties and aberrations of focal length and focal point. J. Appl. Phys. 57, 2385–2401 (1985)

    Google Scholar 

  129. Soa, E.A.: Systematische Untersuchungen an elektrostatischen Immersionsobjekten. In: Jenaer Jahrbuch 1959, vol. I, pp. 115–153. Kommissionsverlag VEB Gustav Fischer, Jena (1959)

    Google Scholar 

  130. Cruise, D.R.: A numerical method for the determination of an electric field about a complicated boundary. J. Appl. Phys. 34, 3477–3479 (1963)

    Google Scholar 

  131. Hawkes, P.W., Kasper, E.: Principles of Electron Optics, vol. 1, 2. Academic, London (1989)

    Google Scholar 

  132. Orloff, J. (ed.): Handbook of Charged Particle Optics. CRC Press, Boca Raton, FL (1997)

    Google Scholar 

  133. www.simion.com.

  134. www.mebs.co.uk.

  135. www.lencova.com.

  136. Liebl, H.: Applied Charged Particle Optics. Springer, Berlin (2008)

    Google Scholar 

  137. Rose, H.H.: Geometrical Charged-Particle Optics. Springer, Berlin (2009)

    Google Scholar 

  138. Heddle, D.W.O.: Electrostatic Lens Systems. Institute of Physics Publ, Bristol (2000)

    Google Scholar 

  139. Chmelik, J., Veneklasen, L., Marx, G.: Comparing cathode lens configurations for low energy electron microscopy. Optik 83, 155–160 (1989)

    Google Scholar 

  140. Bauer, E.: Low energy electron microscopy. Rep. Prog. Phys. 57, 895–938 (1994)

    Google Scholar 

  141. Bauer, E.: LEEM and SPLEEM. In: Hawkes, P., Spence, J.C.H. (eds.) Science of Microscopy, pp. 605–656. Springer, New York (2007)

    Google Scholar 

  142. Orloff, J., Swanson, L.W.: An asymmetric electrostatic lens for field emission microprobe applications. J. Appl. Phys. 50, 2494–2501 (1979)

    Google Scholar 

  143. Tromp, R.M.: Measuring and correcting aberrations of a cathode objective lens. Ultramicroscopy 111, 273–281 (2011)

    Google Scholar 

  144. Bauer, E.: The possibilities for analytical methods in photoemission and low energy electron microscopy. Ultramicroscopy 36, 52–62 (1991)

    Google Scholar 

  145. Feng, J., Padmore, H., Wei, D.H., Anders, S., Wu, Y., Scholl, A., Robin, D.: Modeling the acceleration field and objective lens for an aberration corrected photoemission electron microscope. Rev. Sci. Instrum. 73, 1514–1517 (2002)

    Google Scholar 

  146. Bernheim, M.: Image acquisition with immersion objective lenses using electrons emitted with several tenths of an electron volt energies: towards high spatial resolution ESCA analysis. Ultramicroscopy 106, 398–412 (2006)

    Google Scholar 

  147. Bernheim, M.: Evaluation of abberations of immersion objective lenses in relation to electron emission microscopy. Eur. Phys. J. Appl. Phys. 36, 193–204 (2006)

    Google Scholar 

  148. Pang, A.B., Müller, T., Altman, M.S., Bauer, E.: Fourier optics of image formation in LEEM. J. Phys. Condens. Matter 21, 314006, 10 pages (2009)

    Google Scholar 

  149. Gribi, M., Thürkauf, M., Villiger, W., Wegmann, L.: Ein 70 kV-Elektronenmikroskop mit kalter Kathode und elektrostatischer Linse. Optik 16, 65–86 (1959)

    Google Scholar 

  150. Boersch, H., Hamisch, H., Ehrlich, W.: Oberflächenentladungen über Isolatoren im Vakuum. Z. Angew. Phys. 15, 518–525 (1963)

    Google Scholar 

  151. Fitzgerald, J.P.S., Word, R.C., Könenkamp, R.: Aberrations in asymmetrical electron lenses. Ultramicroscopy 119, 40–44 (2012)

    Google Scholar 

  152. Liebmann, G., Grad, E.M.: Imaging properties of a series of magnetic electron lenses. Proc. Phys. Soc. B 64, 956–971 (1951)

    Google Scholar 

  153. Liebmann, G.: Magnetic electron microscope projector lenses. Proc. Phys. Soc. B 65, 94–108 (1952)

    Google Scholar 

  154. Liebmann, G.: A unified representation of magnetic electron lens properties. Proc. Phys. Soc. B 68, 737–745 (1955)

    Google Scholar 

  155. Hawkes, P.W. (ed.): Magnetic Electron Lenses. Springer, Berlin (1982)

    Google Scholar 

  156. Livingood, J.J.: The Optics of Dipole Magnets. Academic, New York (1969)

    Google Scholar 

  157. Archard, G.D., Mulvey, T.: Magnetic deflexion of electron beams without astigmatism. J. Sci. Instrum. 35, 279–283 (1958)

    Google Scholar 

  158. Mankos, M., Kolařik, V., Veneklasen, L.H.: Electron-optical properties of multiple magnetic prism systems. Nucl. Instrum. Methods Phys. Res. A 298, 189–198 (1990)

    Google Scholar 

  159. Kolařík, V., Mankos, M., Veneklasen, L.H.: Close-packed prism arrays for electron microscopy. Optik 87, 1–12 (1991)

    Google Scholar 

  160. Tsuno, K., Munro, E., Rouse, J.: A beam separator of a close packed prism array for low energy electron microscopy. Nucl. Instrum. Methods Phys. Res. A 363, 276–283 (1995)

    Google Scholar 

  161. Degenhardt, R.: Korrektur von Aberrationen in der Teilchenoptik mit Hilfe von Symmetrien. Ph.D. Thesis, Technische Universität Darmstadt (1992)

    Google Scholar 

  162. Kan, H.-C., Dürkop, T., Phaneuf, R.J.: Comparison of stigmatically focusing magnetic prisms of square versus round symmetries. J. Vac. Sci. Technol. B 20, 2519–2525 (2002)

    Google Scholar 

  163. Kan, H.-C., Auerbach, D., Phaneuf, R.J.: Approach for investigating the astigmatism of a magnetic prism in low-energy electron microscopy. Rev. Sci. Instrum. 74, 1008–1015 (2003)

    Google Scholar 

  164. Preikszas, D., Rose, H.: Corrected low-energy electron microscope for multi-method operation. In: Jouffrey, B., Colliex, C., et al. (eds.) Proc. 13th Internat. Congr. Electron Microscopy, Paris 1994, pp. 197–198. Les éditions de physique, Les Ulis (1994)

    Google Scholar 

  165. Müller, H., Preikszas, D., Rose, H.: A beam separator with small aberrations. J. Electron Microsc. 48, 191–204 (1999)

    Google Scholar 

  166. Preikszas, D., Hartel, P., Spehr, R., Rose, H.: SMART electron optics. In: Frank, L., Čiampor, F. (eds.) Proc. 12th European Congr. Electron Microscopy (EUREM 12) Brno 2000, pp. 181–184. Czech. Soc. Electron Microscopy, Brno (2000)

    Google Scholar 

  167. Wu, Y.K., Robin, D.S., Forest, E., Schlueter, R., Anders, S., Feng, J., Padmore, H., Wei, D.H.: Design and analysis of beam separator magnets for third generation aberration compensated PEEMs. Nucl. Instrum. Methods Phys. Res. A 519, 230–241 (2004)

    Google Scholar 

  168. Schmid, P., Feng, J., Padmore, H., Robin, D., Rose, H., Schlueter, R., Wan, W.: Correction and alignment strategies for the beam separator of the photoemission electron microscope 3 (PEEM3). Rev. Sci. Instrum. 76, 023302, 14 pages (2005)

    Google Scholar 

  169. Wan, W., Feng, J., Padmore, H.A.: A new separator design for aberration corrected photoemission electron microscopes. Nucl. Instrum. Methods Phys. Res. A 564, 537–543 (2006)

    Google Scholar 

  170. Rose, H., Plies, E.: Correction of aberrations in electron optical systems with curved axes. In: Hawkes, P. (ed.) Image Processing and Computer-Aided Design in Electron Optics, pp. 344–369. Academic, London (1973)

    Google Scholar 

  171. Lichte, H., Möllenstedt, G.: Measurement of the roughness of supersmooth surfaces using an electron mirror interference microscope. J. Phys. E Sci. Instrum. 12, 941–944 (1979)

    Google Scholar 

  172. Rempfer, G.F.: A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics. J. Appl. Phys. 67, 6027–6040 (1990)

    Google Scholar 

  173. Rempfer, G., Mauck, M.S.: Correction of chromatic aberration with an electron mirror. Optik 92, 3–8 (1992)

    Google Scholar 

  174. Rempfer, G.F., Desloge, D.M., Skoczylas, W.P., Griffith, O.H.: Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat. Microsc. Microanal. 3, 14–27 (1997)

    Google Scholar 

  175. Zworykin, V.K., Morton, G.A., Ramberg, E.G., Hillier, J., Vance, A.W.: Electron Optics and the Electron Microscope. John Wiley, New York (1945)

    Google Scholar 

  176. Ramberg, E.G.: Aberration correction with electron mirrors. J. Appl. Phys. 20, 183–186 (1949)

    Google Scholar 

  177. Rempfer, G.F., Mauck, M.S.: Aberration-correcting properties of the hyperbolic electron mirror. In: Bailey, G.W. (ed.) Proc. 43rd Annual Meeting Electron Microscopy Society America, San Francisco 1985, pp. 132–133. San Francisco Press, San Francisco, CA (1985)

    Google Scholar 

  178. Shao, Z., Wu, X.D.: A study on hyperbolic mirrors as corrector. Optik 84, 51–54 (1990)

    Google Scholar 

  179. Fitzgerald, J.P.S., Word, R.C., Könenkamp, R.: Adaptive aberration correction using a triode hyperbolic electron mirror. Ultramicroscopy 111, 1495–1503 (2011)

    Google Scholar 

  180. Shao, Z., Wu, X.D.: Adjustable four-electrode electron mirror as an aberration corrector. Appl. Phys. Lett. 55, 2696–2697 (1989)

    Google Scholar 

  181. Preikszas, D.: Korrektur des Farb- und Öffnungsfehlers eines Niederspannungs-Elektronenmikroskops mit Hilfe eines Elektronenspiegels. Ph.D. thesis, Technische Hochschule Darmstadt (1995)

    Google Scholar 

  182. Preikszas, D., Rose, H.: Correction properties of electron mirrors. J. Electron Microsc. 1, 1–9 (1997)

    Google Scholar 

  183. Wan, W., Feng, J., Padmore, H.A., Robin, D.S.: Simulation of a mirror corrector for PEEM3. Nucl. Instrum. Methods Phys. Res. A 519, 222–229 (2004)

    Google Scholar 

  184. Wang, L., Munro, E., Rouse, J., Liu, H.: Simulation of electron mirrors by the differential algebraic method. Phys. Procedia 1, 297–304 (2008)

    Google Scholar 

  185. Schramm, S.M., van der Molen, S.J., Tromp, R.M.: Intrinsic instability of aberration-corrected electron optical systems. Phys. Rev. Lett. 109, 163901, 5 pages (2012)

    Google Scholar 

  186. Fitzgerald, J.P.S., Word, R.C., Könenkamp, R.: Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination. Ultramicroscopy 115, 35–40 (2012)

    Google Scholar 

  187. Hawkes, P. (ed.): Aberration-Corrected Electron Microscopy. Advances in Imaging and Electron Physics. Elsevier, Chichester (2008)

    Google Scholar 

  188. Rose, H.: Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Methods Phys. Res. A 519, 12–27 (2004)

    Google Scholar 

  189. Haider, M., Müller, H., Uhlemann, S., Zach, J., Loebau, U., Hoeschen, R.: Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167–178 (2008)

    Google Scholar 

  190. Haider, M., Hartel, P., Müller, H., Uhlemann, S., Zach, J.: Current und future aberration correctors for the improvement of resolution in electron microscopy. Proc. R. Soc. A 367, 3665–3682 (2009)

    Google Scholar 

  191. Tsuno, K., Ioanoviciu, D., Martinez, G.: Third-order aberration theory of Wien filters for monochromators and aberration correctors. J. Microsc. 217, 205–215 (2005)

    Google Scholar 

  192. Liu, H., Wang, L., Rouse, J., Munro, E.: Design and optimization of multi-pole lens and Wien filter systems. Nucl. Instrum. Methods Phys. Res. A 645, 300–306 (2011)

    Google Scholar 

  193. Erni, R.: Aberration-Corrected Imaging in Transmission Electron Microscopy. Imperial College Press, London (2010)

    Google Scholar 

  194. Liu, X.D., Tang, T.T.: Aberration analysis of Wien filters and design of an electron energy-selective imaging system. Nucl. Instrum. Methods Phys. Res. A 363, 254–260 (1995)

    Google Scholar 

  195. Terauchi, M., Tanaka, M., Tsuno, K., Ishida, M.: Development of a high energy resolution electron energy-loss spectroscopy microscope. J. Microsc. 194, 203–209 (1999)

    Google Scholar 

  196. Niimi, H., Kato, M., Tsutsumi, T., Kawasaki, T., Matsudaira, H., Suzuki, S., Chun, W.-J., Kitajima, Y., Kudo, M., Asakura, K.: Development of imaging energy analyzer using multipole Wien filter. Appl. Surf. Sci. 241, 131–134 (2005)

    Google Scholar 

  197. Niimi, H., Chun, W.-J., Suzuki, S., Asakura, K.: Aberration-corrected multipole Wien filter for energy-filtered x-ray photoemission electron microscopy. Rev. Sci. Instrum. 78, 0637101–6371018 (2007)

    Google Scholar 

  198. Niimi, H., Kato, M., Kawasaki, T., Miyamoto, T., Suzuki, S., Chun, W.-J., Kudo, M., Kawahara, N., Doi, M., Tsukamoto, K., Asakura, K.: Development of in-lab energy-filtered X-ray photoemission electron microscope using air-core-coil-type multipole Wien filter. Surf. Sci. 601, 4742–4747 (2007)

    Google Scholar 

  199. Asakura, K., Niimi, H., Kato, M.: Energy filtered X-ray photoemission electron microscopy. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 162, pp. 1–43. Academic, London (2010)

    Google Scholar 

  200. Yasufuku, H., Ohminami, Y., Tsutsumi, T., Asakura, K., Kato, M., Sakai, Y., Kitajima, Y., Iwasawa, Y.: Observation of energy-filtered image for X-ray photoemission electron microscopy (EXPEEM) using a retarding Wien-filter energy analyzer. Chem. Lett. 8, 842–843 (2002)

    Google Scholar 

  201. Yasufuku, H., Yoshikawa, H., Kimura, M., Vlaicu, A.M., Kato, M., Kudo, M., Fujikata, J., Fukushima, S.: On the wide-energy-range tuning of x-ray photoemission electron microscope optics for the observation of the photoelectrons excited by several keV x-rays. Rev. Sci. Instrum. 77, 033702, 6 pages (2006)

    Google Scholar 

  202. Yamaguchi, Y., Takakusagi, S., Sakai, Y., Kato, M., Asakura, K., Iwasawa, Y.: X-ray photoemission electron microscopy XPEEM as a new promising tool for the real-time chemical imaging of active surfaces. J. Mol. Catal. A 141, 129–137 (1999)

    Google Scholar 

  203. Takakusagi, S., Kato, M., Sakai, Y., Fukui, K., Asakura, K., Iwasawa, Y.: Development of an X-ray photoemission electron microscopy system with multi-probes, and its application to surface imaging at static and dynamic states. J. Microsc. 200, 240–250 (2000)

    Google Scholar 

  204. Imhof, R.E., Adams, A., King, G.C.: Energy and time resolution of the 180° hemispherical electrostatic analyser. J. Phys. E Sci. Instrum. 9, 138–142 (1976)

    Google Scholar 

  205. Zouros, T.J.M., Benis, E.P.: The hemispherical deflector analyser revisited. I. Motion in the ideal 1/r potential, generalized entry conditions, Kepler orbits and spectrometer basic equation. J. Electron. Spectros. Relat. Phenomena 125, 221–248 (2002)

    Google Scholar 

  206. Zouros, T.J.M., Benis, E.P.: The hemispherical deflector analyser revisited. I. Motion in the ideal 1/r potential, generalized entry conditions, Kepler orbits and spectrometer basic equation. Erratum. J. Electron. Spectros. Relat. Phenomena 142, 175–176 (2005)

    Google Scholar 

  207. Zouros, T.J.M., Benis, E.P., Chatzakis, I.: Optimization of the energy resolution of an ideal ESCA-type hemispherical analyzer. Nucl. Instrum. Methods Phys. Res. B 235, 535–539 (2005)

    Google Scholar 

  208. Zouros, T.J.M.: Theoretical investigation of the energy resolution of an ideal hemispherical deflector analyzer and its dependence on the distance from the focal plane. J. Electron. Spectros. Relat. Phenomena 152, 67–77 (2006)

    Google Scholar 

  209. Zouros, T.J.M.: Theoretical investigation of the energy resolution of an ideal hemispherical deflector analyzer and its dependence on the distance from the focal plane. Erratum. J. Electron. Spectros. Relat. Phenomena 153, 102–107 (2006)

    Google Scholar 

  210. Benis, E.P., Zouros, T.J.M.: The hemispherical deflector analyser revisited II. Electron-optical properties. J. Electron. Spectros. Relat. Phenomena 163, 28–39 (2008)

    Google Scholar 

  211. Lilienkamp, G.: New aspects in LEEM and spectroscopic emission microscopy instrumentation. In: Frank, L., Čiampor, F. (eds.) Proc. 12th European Congr. Electron Microscopy (EUREM 12), Brno 2000, pp. I 177–I 180. Czech. Soc. Electron Microscopy, Brno (2000)

    Google Scholar 

  212. Tonner, B.P.: Energy-filtered imaging with electrostatic optics for photoelectron microscopy. Nucl. Instrum. Methods Phys. Res. A 291, 60–66 (1990)

    Google Scholar 

  213. Grzelakowski, K.: A novel imaging energy filter for cathode lens electron microscopy. Ultramicroscopy 116, 95–105 (2012)

    Google Scholar 

  214. Grzelakowski, K.: A flange on electron spectromicroscope with spherical deflector analyzer-simultaneous imaging of reciprocal and real spaces. Ultramicroscopy 130, 29–35 (2013)

    Google Scholar 

  215. www.opticon-nanotechnology.com.

  216. Legler, W.: Ein modifiziertes Wiensches Filter als Elektronenmonochromator. Z. Phys. 171, 424–435 (1963)

    Google Scholar 

  217. Boersch, H., Geiger, J., Stickel, W.: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415–424 (1964)

    Google Scholar 

  218. Plies, E., Marianowski, K., Ohnweiler, T.: The Wien filter: history, fundamentals and modern applications. Nucl. Instrum. Methods Phys. Res. A 645, 7–11 (2011)

    Google Scholar 

  219. Kisker, E., Baum, G., Mahan, A.H., Raith, W., Reihl, B.: Electron field emission from ferromagnetic europium sulfide on tungsten. Phys. Rev. B 18, 2256–2275 (1978)

    Google Scholar 

  220. Yasue, T., Suzuki, M., Tsuno, K., Goto, S., Arai, Y., Koshikawa, T.: Novel multipole Wien filter as three-dimensional spin manipulator. Rev. Sci. Instrum. 85, 043701 (2014)

    Google Scholar 

  221. www.prolight.info/pdf_specs/OSRAM-MICROLITHOGRAPHY-HBO.pdf.

  222. Zhu, H., Blackborow, P.: LDLS sheds light on analytical-sciences applications. Laser Focus World 47(12), 53–59 (2011)

    Google Scholar 

  223. www.energetiq.com.

  224. Feuerbacher, B., Fitton, B.: Experimental investigation of photoemission from satellite surface materials. J. Appl. Phys. 43, 1563–1572 (1972)

    Google Scholar 

  225. Wegmann, L., Buhl, R., Dannöhl, H.-D., Graber, R., Grauer-Carstensen, E., Gribi, M.: Über einige neuere Ergebnisse aus der Photoemissions-Elektronen-Mikroskopie. In: Auwärter, M. (ed.) Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten, vol. II, pp. 111–130. Wiss. Verlagsges, Stuttgart (1971)

    Google Scholar 

  226. Nakagawa, T., Watanabe, K., Matsumoto, Y., Yokoyama, T.: Magnetic circular dichroism photoemission electron microscopy using laser and threshold photo-emission. J. Phys. Condens. Matter 21, 314010, 6 pages (2009)

    Google Scholar 

  227. Jones, M.D., Massey, G.A., Habliston, D.L., Griffith, O.H.: Laser excitatiton in photoelectron microscopy. In: Pfefferkorn, G., Schur, K. (eds.) Proc. First Intern. Conf. Emission Electron Microscopy/Germany. Beiträge zur elektronenmikroskopischen Direktabbildung von Oberflächen, Tubingen/Germany 1979, pp. 3–38. Verlag R.A. Remy, Münster (1979)

    Google Scholar 

  228. Massey, G.A., Jones, M.D., Johnson, J.C.: Nonlinear photoemission for viewing guided or evanescent waves. IEEE J. Quantum Electron. 17, 1035–1041 (1981)

    Google Scholar 

  229. Massey, G.A., Jones, M.D., Johnson, J.C.: Measurement of laser photoelectron damage degradation at high current densities. IEEE J. Quantum Electron. 19, 873–877 (1983)

    Google Scholar 

  230. Bostanjoglo, O., Weingärtner, M.: Pulsed photoelectron microscope for imaging laser-induced nanosecond processes. Rev. Sci. Instrum. 68, 2456–2460 (1997)

    Google Scholar 

  231. Aeschlimann, M., Schmuttenmaer, C.A., Elsayed-Ali, H.E., Miller, R.J.D., Cao, J., Gao, Y., Mantell, D.A.: Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit. J. Chem. Phys. 102, 8606–8613 (1995)

    Google Scholar 

  232. Schmidt, O., Bauer, M., Wiemann, C., Porath, R., Scharte, M., Andreyev, O., Schönhense, G., Aeschlimann, M.: Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 74, 223–227 (2002)

    Google Scholar 

  233. Munakata, T., Masuda, T., Ueno, N., Abdureyim, A., Sonoda, Y.: Time-resolved photoemission microspectroscopy based on fs-VUV laser light. Surf. Sci. 507–510, 434–440 (2002)

    Google Scholar 

  234. Mikkelsen, A., Schwenke, J., Fordell, T., Luo, G., Klünder, K., Hilner, E., Anttu, N., Zakharov, A.A., Lundgren, E., Mauritsson, J., Andersen, J.N., Xu, H.Q., L’Huillier, A.: Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains. Rev. Sci. Instrum. 80, 123703, 7 pages (2009)

    Google Scholar 

  235. Meyer zu Heringdorf, F.-J., Chelaru, L.I., Möllenbeck, S., Thien, D., Horn-von Hoegen, M.: Femtosecond photoemission microscopy. Surf. Sci. 601, 4700–4705 (2007)

    Google Scholar 

  236. Höfer, A., Duncker, K., Kiel, M., Förster, S., Widdra, W.: Laser-excited PEEM using a fully tunable fs-laser system. IBM J. Res. Dev. 55(4), 4.1–4.8 (2011)

    Google Scholar 

  237. Faure, J., Mauchain, J., Papalazarou, E., Yan, W., Pinon, J., Marsi, M., Perfetti, L.: Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces. Rev. Sci. Instrum. 83, 043109, 7 pages (2012)

    Google Scholar 

  238. Buckanie, N.M., Göhre, J., Zhou, P., von der Linde, D., Horn-von Hoegen, M., Meyer zu Heringdorf, F.-J.: Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. J. Phys. Condens. Matter 21, 314003, 7 pages (2009)

    Google Scholar 

  239. Litvinenko, V.N., Burnham, B., Madey, J.M.J., Park, S.H., Wu, Y.: Duke storage ring UWVUV FEL: status and prospects. Nucl. Instrum. Methods Phys. Res. A 375, 46–52 (1996)

    Google Scholar 

  240. Ade, H., Yang, W., English, S.L., Hartman, J., Davis, R.F., Nemanich, R.J.: A free electron laser photoemission electron microscope system (FEL PEEM). Surf. Rev. Lett. 5, 1257–1268 (1998)

    Google Scholar 

  241. De Ninno, G., Trovo, M., Danailov, M., Marsi, M., Karantzoulis, E., Diviacco, B., Walker, R.P., Bartolini, R., Dattoli, G., Giannessi, L., Mezi, L., Couprie, M.E., Gatto, A., Kaiser, N., Gunster, S., Ristau, D.: The UV European FEL at ELETTRA: towards compatibility of storage ring operation for FEL and synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 507, 274–280 (2003)

    Google Scholar 

  242. De Ninno, G., Allaria, E., Coreno, M., Curbis, F., Danailov, M.B., Karantzoulis, E., Locatelli, A., Menteş, T.O., Niño, M.A., Spezzani, C., Trovò, M.: Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments. Phys. Rev. Lett. 101, 053902, 4 pages (2008)

    Google Scholar 

  243. Gregoratti, L., Menteş, T.O., Locatelli, A., Kiskinova, M.: Beam-induced effects in soft X-ray photoelectron emission microscopy experiments. J. Electron. Spectros. Relat. Phenomena 170, 13–18 (2009)

    Google Scholar 

  244. Kong, X., Rowe, J.E., Nemanich, R.J.: Single molecule measurements with photoelectron emission microscopy. J. Vac. Sci. Technol. B 26, 1461–1465 (2008)

    Google Scholar 

  245. Attwood, D.: Soft X-rays and Extreme Ultraviolet Radiation. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  246. Willmott, P.: An Introduction to Synchrotron Radiation. John Wiley, Chichester (2011)

    Google Scholar 

  247. Clarke, J.A.: The Science and Technology of Undulators and Wigglers. Oxford University Press, Oxford (2004)

    Google Scholar 

  248. www.elettra.trieste.it/it/lightsources/elettra/elettra-beamlines/nanospectroscopy/beamline-description.html.

  249. Cocco, D., Marsi, M., Kiskinova, M., Prince, K.C., Schmidt, T., Heun, S., Bauer, E.: A microfocussing VLS grating based beamline for advanced microscopy. In: Proc. SPIE Conference on EUV, X-Ray, Neutron Optics and Sources, Denver, Colorado 1999, pp. 271–279 (1999)

    Google Scholar 

  250. Locatelli, A., Bianco, A., Cocco, D., Cherifi, S., Heun, S., Marsi, M., Pasqualetto, M., Bauer, E.: High lateral resolution spectroscopic imaging of surfaces: the undulator beamline “Nanospectroscopy” at Elettra. J. Phys. IV (Paris) 104, 99–102 (2003)

    Google Scholar 

  251. Locatelli, A., Menteş, T.O., Niño, M.Á., Bauer, E.: Image blur and energy broadening effects in XPEEM. Ultramicroscopy 111, 1447–1454 (2011)

    Google Scholar 

  252. Harada, Y., Masuda, S., Ozaki, H.: Electron spectroscopy using metastable atoms as probes for solid surfaces. Chem. Rev. 97, 1897–1952 (1997)

    Google Scholar 

  253. Morgner, H.: The characterization of liquid and solid surfaces with metastable helium atoms. In: Bederson, B., Walther, H. (eds.) Advances in Atomic, Molecular, and Optical Physics, vol. 42, pp. 387–488. Academic, San Diego, CA (2000)

    Google Scholar 

  254. Yasufuku, H., Okumura, M., Ibe, T., Okudaira, K., Harada, Y., Ueno, N.: Surface images of SiO2/Si(100) pattern using electron emission microscopy with metastable atoms. Photons and low-energy electrons. Jpn. J. Appl. Phys. 40, 2447–2450 (2001)

    Google Scholar 

  255. Wei, H., Beuermann, L., Helmbold, J., Borchardt, G., Kempter, V., Lilienkamp, G., Maus-Friedrichs, W.: Study of SrO segregation on SrTiO3(100) surfaces. J. Eur. Ceram. Soc. 21, 1677–1680 (2001)

    Google Scholar 

  256. Kamada, T., Sogo, M., Aoki, M., Masuda, S.: Mesoscopic pattern formation during initial oxidation of Ni(111) observed by electron emission microscopy. Surf. Sci. 602, 724–732 (2008)

    Google Scholar 

  257. Yamamoto, S., Masuda, S., Yasufuku, H., Ueno, N., Harada, Y., Ichinokawa, T., Kato, M., Sakai, Y.: Study of solid surfaces by metastable electron emission microscopy: energy-filtered images and local electron spectra at the outermost surface layer of silicon oxide on Si(100). J. Appl. Phys. 82, 2954–2960 (1997)

    Google Scholar 

  258. Wei, H., Maus-Friedrichs, W., Lilienkamp, G., Kempter, V., Helmbold, J., Gömann, K., Borchardt, G.: Surface structure of oxygen annealed donor doped SrTiO3(100) single crystals studied with spectroscopic electron microscopy. J. Electroceram. 8, 221–228 (2002)

    Google Scholar 

  259. Lilienkamp, G., Wei, H., Maus-Friedrichs, W., Kempter, V., Marbach, H., Günther, S., Suchorski, Y.: Metastable impact electron emission microscopy of the catalytic H2 oxidation on Rh(110). Surf. Sci. 532–535, 132–136 (2003)

    Google Scholar 

  260. Lilienkamp, G., Suchorski, Y.: Metastable impact electron emission microscopy: principles and applications. Surf. Interface Anal. 38, 378–382 (2006)

    Google Scholar 

  261. Reimer, L.: Transmission Electron Microscopy, 4th edn. Springer, Berlin (1997)

    Google Scholar 

  262. www.tedpella.com.

  263. www.a-p-tech.com.

  264. Mackie, W.A., Magera, G.G.: Defined emission area and custom thermal electron sources. J. Vac. Sci. Technol. B 29, 06F601, 4 pages (2011)

    Google Scholar 

  265. Kagarice, K.J., Magera, G.G., Pollard, S.D., Mackie, W.A.: Cold field emission from HfC (310). J. Vac. Sci. Technol. B 26, 868–871 (2008)

    Google Scholar 

  266. Forbes, R.G.: Physics of generalized Fowler-Nordheim-type equations. J. Vac. Sci. Technol. B 26, 788–793 (2008)

    Google Scholar 

  267. Cook, B., Verduin, T., Hagen, C.W., Kruit, P.: Brightness limitations of cold field emitters caused by Coulomb interactions. J. Vac. Sci. Technol. B 28, C6C74–C6C79 (2010)

    Google Scholar 

  268. Verduin, T., Cook, B., Kruit, P.: Influence of gun design on Coulomb interactions in a field emission gun. J. Vac. Sci. Technol. B 29, 06F605, 4 pages (2011)

    Google Scholar 

  269. Swanson, L.W., Schwind, G.A.: Review of ZrO/W Schottky cathode. In: Orloff, J. (ed.) Handbook of Charged Particle Optics, pp. 1–28. CRC Press, Boca Raton, FL (2008)

    Google Scholar 

  270. Schwind, G.A., Magera, G., Swanson, L.W.: Comparison of parameters for Schottky and cold field emission sources. J. Vac. Sci. Technol. B 24, 2897–2901 (2006)

    Google Scholar 

  271. Milne, W.I., Teo, K.B.K., Mann, M., Bu, I.Y.Y., Amaratunga, G.A.J., De Jonge, N., Allioux, M., Oostveen, J.T., Legagneux, P., Minoux, E., Gangloff, L., Hudanski, L., Schnell, J.-P., Dieumegard, L.D., Peauger, F., Wells, T., El-Gomati, M.: Carbon nanotubes as electron sources. Phys. Status Solidi A 203(6), 1058–1063 (2006)

    Google Scholar 

  272. Nakahara, H., Kusano, Y., Kono, T., Saito, Y.: Evaluations of carbon nanotube field emitters for electron microscopy. Appl. Surf. Sci. 256, 1214–1217 (2009)

    Google Scholar 

  273. de Jonge, N., Allioux, M., Oostveen, J.T., Teo, K.B., Milne, W.I.: Low noise and stable emission from carbon nanotube electron sources. Appl. Phys. Lett. 87, 133118, 3 pages (2005)

    Google Scholar 

  274. de Jonge, N.: Carbon nanotube electron sources for electron microscopes. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 156, pp. 203–233. Elsevier, Amsterdam (2009)

    Google Scholar 

  275. Oshima, C., Rokuta, E., Itagaki, T., Ishikawa, T., Cho, B., Kuo, H.S., Hwang, I.S., Tsong, T.T.: Demountable single-atom electron source. e-J. Surf. Sci. Nanotechnol. 3, 412–416 (2005)

    Google Scholar 

  276. Ishikawa, T., Urata, T., Cho, B., Rokuta, E., Oshima, C., Terui, Y., Saito, H., Yonezawa, A., Tsong, T.T.: Highly efficient electron gun with a single-atom electron source. Appl. Phys. Lett. 90, 143120, 3 pages (2007)

    Google Scholar 

  277. Chang, C.C., Kuo, H.S., Hwang, I.S., Tsong, T.T.: A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter. Nanotechnology 20, 115401, 6 pages (2009)

    Google Scholar 

  278. Hwang, I.-S., Kuo, H.-S., Chang, C.-C., Tsong, T.T.: Noble-metal covered W(111) single-atom electron sources. J. Electrochem. Soc. 157, P7–P12 (2010)

    Google Scholar 

  279. Nakagawa, T., Rokuta, E., Murata, H., Shimoyama, H., Oshima, C.: Field ion microscopy of nanometer-size pyramid grown on a blunt end of tungsten tip. e-J. Surf. Sci. Nanotechnol. 10, 12–16 (2012)

    Google Scholar 

  280. Nakagawa, T., Rokuta, E., Murata, H., Shimoyama, H., Oshima, C.: Fabrication of a single-atom electron source by noble-metal surface diffusion. J. Vac. Sci. Technol. B 31, 02B105, 5 pages (2013)

    Google Scholar 

  281. Niu, Y.R., Altman, M.S.: Superparamagnetic limit to spin-polarized vacuum tunneling from Fe-coated W(001) tips. Appl. Phys. Lett. 95, 203113–203115 (2009)

    Google Scholar 

  282. Niu, Y.R., Altman, M.S.: Spin polarized field emission from Fe and Co-coated W tips. Surf. Sci. 604, 1055–1059 (2010)

    Google Scholar 

  283. Pierce, D.T.: Spin-polarized electron sources. In: Dunning, F.B., Hulet, R.G. (eds.) Atomic, Molecular and Optical Physics: Charged Particles. Methods in Experimental Physics, Part A, vol. 29, pp. 1–38. Academic, San Diego, CA (1995)

    Google Scholar 

  284. Suyama, M.: Latest status of PMTs and related sensors. In: International workshop on new photon-detectors PD07, Kobe University, Kobe, Japan 2007. Proceedings of Science, pp. 1–11

    Google Scholar 

  285. Mamaev, Y.A., Gerchikov, L.G., Yashin, Y.P., Vasiliev, D.A., Kuzmichev, V.V., Ustinov, V.M., Zhukov, A.E., Mikhrin, V.S., Vasiliev, A.P.: Optimized photocathode for spin-polarized electron sources. Appl. Phys. Lett. 93, 081114, 3 pages (2008)

    Google Scholar 

  286. Jin, X., Ichihashi, F., Mano, A., Yamamoto, N., Takeda, Y.: Fourfold increase in quantum efficiency in highly spin-polarized transmission-type photocathode. Jpn. J. Appl. Phys. 51, 108004, 2 pages (2012)

    Google Scholar 

  287. Jin, X., Yamamoto, N., Nakagawa, Y., Mano, A., Kato, T., Tanioku, M., Ujihara, T., Takeda, Y., Okumi, S., Yamamoto, M., Nakanishi, T., Saka, T., Horinaka, H., Kato, T., Yasue, T., Koshikawa, T.: Super-high brightness and high-spin-polarization photocathode. Appl. Phys. Express 1, 045002, 3 pages (2008)

    Google Scholar 

  288. Jin, X., Matsuba, S., Honda, Y., Miyajima, T., Yamamoto, M., Utiyama, T., Takeda, Y.: Picosecond electron bunches from GaAs/GaAsP strained superlattice photocathode. Ultramicroscopy 130, 44–48 (2013)

    Google Scholar 

  289. Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., Tiedje, T.: Band gap of GaAs1-xBix, 0 < x < 3.6%. Appl. Phys. Lett. 82, 3874–3876 (2003)

    Google Scholar 

  290. Batool, Z., Hild, K., Hosea, T.J.C., Lu, X., Tiedje, T., Sweeney, S.J.: The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108, 7 pages (2012)

    Google Scholar 

  291. Kudrawiec, R., Kopaczek, J., Sitarek, P., Misiewicz, J., Henini, M., Novikov, S.V.: Unusual broadening of E0 and E0 + ΔSO transitions in GaAsBi studied by electromodulation spectroscopy. J. Appl. Phys. 111, 066103, 3 pages (2012)

    Google Scholar 

  292. Gerchikov, L.G., Aulenbacher, K., Mamaev, Y.A., Riehn, E.J., Yashin, Y.P.: Spin polarized electron transport and partial localization of photoelectrons in highly doped photocathodes. J. Phys. Conf. Ser. 298, 012013, 10 pages (2011)

    Google Scholar 

  293. Maldonado, J.R., Liu, Z., Dowell, H., Kirby, R.E., Sun, Y., Pianetta, P., Pease, F.: Robust CsBr/Cu photocathodes for the linac coherent light source. Phys. Rev. ST Accel. Beams 11, 060702, 5 pages (2008)

    Google Scholar 

  294. Uchiyama, S., Takagi, Y., Niigaki, M., Kan, H., Kondoh, H.: GaN-based photocathodes with extremely high quantum efficiency. Appl. Surf. Lett. 86, 103511, 3 pages (2005)

    Google Scholar 

  295. Cultrera, L.: Cathodes for photoemission guns. In: Proc. 2011 Particle Accelerator Conference, pp. 2099–2103, New York, NY (2011)

    Google Scholar 

  296. Bazarov, I.V., Dunham, B.M., Liu, X., Virgo, M., Dabiran, A.M., Hannon, F., Sayed, H.: Thermal emittance and response time measurements of a GaN photocathode. J. Appl. Phys. 105, 083715, 4 pages (2009)

    Google Scholar 

  297. Tromp, R.M.: Selected-area diffraction and spectroscopy in LEEM and PEEM. Ultramicroscopy 120, 73–7 (2012)

    Google Scholar 

  298. Yamamoto, I., Matsuura, N., Miyakubo, K., Yamada, T., Munakata, T.: High-precision sample stage for photoemission microscopy of organic films. J. Electron. Spectros. Relat. Phenomena 174, 131–135 (2009)

    Google Scholar 

  299. Ellis, A.W., Tromp, R.M.: A versatile ultra high vacuum sample stage with six degrees of freedom. Rev. Sci. Instrum. 84, 075112, 7 pages (2013)

    Google Scholar 

  300. www.smaract.de.

  301. Doran, A., Church, M., Miller, T., Morrison, G., Young, A.T., Scholl, A.: Cryogenic PEEM at the advanced light source. J. Electron. Spectros. Relat. Phenomena 185, 340–346 (2012)

    Google Scholar 

  302. Alvarado, S., Campagna, M., Hopster, H.: Surface magnetism of Ni (100) near the critical region by spin-polarized electron scattering. Phys. Rev. Lett. 48, 51–54 (1982)

    Google Scholar 

  303. Yamaguchi, R., Terashima, K., Fukumoto, K., Takada, Y., Kotsugi, M., Miyata, Y., Mima, K., Komori, S., Itoda, S., Nakatsu, Y., Yano, M., Miyamoto, N., Nakamura, T., Kinoshita, T., Watanabe, Y., Manabe, A., Suga, S., Imada, S.: An XMCD-PEEM study on magnetized Dy-doped Nd-Fe-B permanent magnets. IBM J. Res. Dev. 55(4), 12.1–12.6 (2011)

    Google Scholar 

  304. Heyderman, L.J., Kläui, M., Nöhammer, B., Vaz, C.A.F., Bland, J.A.C., David, C.: Fabrication of nanoscale magnetic ring structures and devices. Microelectron. Eng. 73–74, 780–784 (2004)

    Google Scholar 

  305. Herrmann, K.-H.: Image recording in microscopy. In: Amelinckx, S., van Dyck, D., van Landuyt, J., van Tendeloo, G. (eds.) Handbook of Microscopy, vol. 2, pp. 885–921. VCH, Weinheim (1997)

    Google Scholar 

  306. Zuo, J.M.: Electron detection characteristics of slow-scan CCD camera. Ultramicroscopy 66, 21–33 (1996)

    Google Scholar 

  307. Zuo, J.M.: Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc. Res. Tech. 49, 245–268 (2000)

    Google Scholar 

  308. Coates, C., Campillo, C.: CCDs lose ground to new CMOS sensors. Laser Focus World 47, 40–45 (2011)

    Google Scholar 

  309. Fan, G.Y., Ellisman, M.H.: Optimization of thin-foil based phosphor screens for CCD imaging in TEM in the voltage range of 80–400 kV. Ultramicroscopy 66, 11–19 (1996)

    Google Scholar 

  310. Wiza, J.L., Henkel, P.R., Roy, R.L.: Improved microchannel plate performance with a resistive anode encoder. Rev. Sci. Instrum. 48, 1217–1218 (1977)

    Google Scholar 

  311. Edgar, M.L., Kessel, R., Lapington, J.S., Walton, D.M.: Spatial charge cloud distribution of microchannel plates. Rev. Sci. lnstrum. 60, 3673–3680 (1989)

    Google Scholar 

  312. Tremsin, A.S., Siegmund, O.H.W.: Spatial distribution of electron cloud footprints from microchannel plates: measurements and modeling. Rev. Sci. Instrum. 70, 3282–3288 (1999)

    Google Scholar 

  313. Shimizu, H., Yasue, T., Koshikawa, T.: Image blur by micro channel plate in LEEM/PEEM. In: Proc. 6th Intern. Symp. Atomic Level Charact. New Mater. Devices (ALC‘07), Kanazawa 2007. JSPS 141 Activity Report, pp. 203–206 (2008)

    Google Scholar 

  314. Koshida, N., Hosobuchi, M.: Energy distribution of output electrons from a microchannel plate. Rev. Sci. Instrum. 56, 1329–1331 (1985)

    Google Scholar 

  315. Saito, M., Saito, Y., Asamura, K.: Spatial charge cloud size of microchannel plates. Rev. Sci. Instrum. 78, 023302, 7 pages (2007)

    Google Scholar 

  316. Aase, J.G., Burchill, J.K., Knudsen, D.J., Hackett, J.P., Moffat, B.: Spatial resolution and relative brightness of a microchannel plate detector system with P20 and P43 phosphor screens. Opt. Eng. 50, 064001, 6 pages (2011)

    Google Scholar 

  317. Moldovan, G., Matheson, J., Derbyshire, G., Kirkland, A.: Characterisation of a detector based on microchannel plates for electrons in the energy range 10–20 keV. Nucl. Instrum. Methods Phys. Res. A 596, 402–408 (2008)

    Google Scholar 

  318. Daud, T., Janesick, J.R., Evans, K., Elliott, T.: Charge-coupled-devise response to electron beam energies of less than 1 keV up to 20 keV. Opt. Eng. 26, 686–691 (1987)

    Google Scholar 

  319. Stearns, D.G., Wiedwald, J.D.: Response of charge-coupled devices to direct electron bombardment. Rev. Sci. Instrum. 60, 1095–1103 (1989)

    Google Scholar 

  320. Horáček, M.: Charge-coupled device area detector for low energy electrons. Rev. Sci. Instrum. 74, 3379–3384 (2003)

    Google Scholar 

  321. Horáček, M.: Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons. Rev. Sci. Instrum. 76, 093704, 6 pages (2005)

    Google Scholar 

  322. www.gatan.com/products/digital_imaging/products/K2-Direct-Detection.php.

  323. www.panalyticalnow.com.

  324. http://www.directelectron.com.

  325. Battaglia, M., Contarato, D., Denes, P., Doering, D., Duden, T., Krieger, B., Giubilato, P., Gnani, D., Radmilovic, V.: Characterisation of a CMOS active pixel sensor for use in the TEAM microscope. Nucl. Instrum. Methods Phys. Res. A 622, 669–677 (2010)

    Google Scholar 

  326. Krieger, B., Contarato, D., Denes, P., Doering, D., Gnani, D., Joseph, J., Schindler, S.: Fast, radiation hard, direct detection CMOS imagers for high resolution transmission electron microscopy. In: 2011 I.E. Nuclear Science Symposium, pp. 1946–1949 (2011)

    Google Scholar 

  327. van Gastel, R., Sikharulidze, I., Schramm, S., Abrahams, J.P., Poelsema, B., Tromp, R.M., van der Molen, S.J.: Medipix 2 detector applied to low energy electron microscopy. Ultramicroscopy 110, 33–35 (2009)

    Google Scholar 

  328. Sikharulidze, I., van Gastel, R., Schramm, S., Abrahams, J.P., Poelsema, B., Tromp, R.M., van der Molen, S.J.: Low energy electron microscopy imaging using Medipix2 detector. Nucl. Instrum. Methods Phys. Res. A 633, S239–S242 (2011)

    Google Scholar 

  329. Faruqi, A.R., McMullan, G.: Electronic detectors for electron microscopy. Q. Rev. Biophys. 44, 357–390 (2011)

    Google Scholar 

  330. Schauer, R., Autrata, R.: Performance of YAG: Ce single crystal screens for TEM. In: Calderón Benavides, H.A., Yacamán, M.J. (eds.) Proc.14th Intern. Congr. Electron Microscopy, 1998, pp. 633–634. Institute of Physics Publishing, Bristol (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, E. (2014). Instrumentation. In: Surface Microscopy with Low Energy Electrons. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0935-3_3

Download citation

Publish with us

Policies and ethics