Skip to main content

Basic Interactions

  • Chapter
  • First Online:

Abstract

Understanding the interactions of photons and slow electrons with condensed matter is fundamental for the understanding of the imaging process in emission and reflection electron microscopy with slow electrons. While some of these interactions are common to both emission and reflection imaging, such as the propagation of the electrons in the sample to its surface, there are fundamental differences between the two imaging modes. Following the historical evolution of surface imaging with slow electrons, this chapter discusses first the processes involved in emission microscopy and then turns to those important in reflection microscopy with electrons entering the sample, i.e., to low energy electron microscopy (LEEM). In mirror electron microscopy the incident beam does not interact with the sample but only with the field modification caused by the sample, which is a problem of electron optics and image formation and will be discussed in Chap. 4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brodskii, A.M., Gurevich, Y.Y., Levich, V.G.: General threshold theory of electron emission from the surface of a metal. Phys Status Solidi 40, 139–151 (1970)

    Google Scholar 

  2. Jensen, K.L., Moody, N.A., Feldman, D.W., Montgomery, E.J., O’Shea, P.G.: Photoemission from metals and cesiated surfaces. J. Appl. Phys. 102, 024911, 11 pages (2007)

    Google Scholar 

  3. Modinos, A.: Field, Thermionic, and Secondary Electron Emission Spectroscopy. Plenum, New York (1984)

    Google Scholar 

  4. Hutson, A.R.: Velocity analysis of thermionic emission from single-crystal tungsten. Phys. Rev. 98, 889–901 (1955)

    Google Scholar 

  5. Herring, C., Nichols, M.H.: Thermionic emission. Rev. Mod. Phys. 21, 185–270 (1949)

    Google Scholar 

  6. Dobretsov, L.N.: Elektronen- und Ionenemission. NASA Techn. Transl. TT F-73, NASA, Washington 1963. VEB Verlag Technik, Berlin (1954)

    Google Scholar 

  7. Nottingham, W.B.: Thermionic Emission. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. 21, pp. 1–175. Springer, Berlin (1956)

    Google Scholar 

  8. Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.X., Melosh, N.A.: Photo-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9, 762–767 (2010)

    Google Scholar 

  9. Feibelman, P., Eastman, D.E.: Photoemission spectroscopy: correspondence between quantum theory and experimental phenomenology. Phys. Rev. B 10, 4932–4947 (1974)

    Google Scholar 

  10. Pendry, J.B.: Theory of photoemission. Surf. Sci. 57, 679–705 (1976)

    Google Scholar 

  11. Berglund, C.N., Spicer, W.E.: Photoemission studies of silver and copper: theory. Phys. Rev. 136, A1030–A1044 (1964)

    Google Scholar 

  12. Feuerbacher, B., Fitton, B., Willis, R.F. (eds.): Photoemission and the Electronic Properties of Surfaces. John Wiley & Sons, Chichester (1978)

    Google Scholar 

  13. Kevan, S.D. (ed.): Angle-Resolved Photoemission. Elsevier, Amsterdam (1992)

    Google Scholar 

  14. Hedin, L.: On correlation effects in electron spectroscopies and the GW approximation. J. Phys. Condens. Matter 11, R489–R528 (1999)

    Google Scholar 

  15. Hüfner, S.: Photoelectron Spectroscopy Principles and Applications, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  16. Schattke, W., van Hove, M.A. (eds.): Solid-State Photoemission and Related Methods. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  17. Hüfner, S. (ed.): Very High Resolution Photoelectron Spectroscopy. Springer, Berlin (2007)

    Google Scholar 

  18. Schwabl, F.: Advanced Quantum Mechanics, p. 187. Springer, Berlin (1999)

    Google Scholar 

  19. Kantorovich, I.I.: Nonlinear surface photoelectric effect in metals subjected to intense light. Sov. Phys. Tech. Phys. 22, 397–399 (1977)

    Google Scholar 

  20. Anisimov, S.I., Benderskiĭ, V.A., Farkas, G.: Nonlinear photoelectric emission from metals induced by laser irradiation. Sov. Phys. Usp. 20, 467–488 (1977)

    Google Scholar 

  21. Ferrini, G., Banfi, F., Giannetti, C., Parmigiani, F.: Non-linear electron photoemission from metals with ultrashort laser pulses. Nucl. Instrum. Meth. Phys. Res. A 601, 123–131 (2009)

    Google Scholar 

  22. Fowler, R.H.: The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 38, 45–56 (1931)

    Google Scholar 

  23. DuBridge, L.A.: Theory of the energy distribution of photoelectrons. Phys. Rev. 43, 727–741 (1933)

    Google Scholar 

  24. Mahan, G.D.: Theory of photoemission in simple metals. Phys. Rev. B 2, 4334–4350 (1970)

    Google Scholar 

  25. Kong, X., Rowe, J.E., Nemanich, R.: Single molecule measurements with photoelectron emission microscopy. J. Vac. Sci. Technol. B 26, 1461–1465 (2008)

    Google Scholar 

  26. Kane, E.O.: Theory of photoelectric emission from semiconductors. Phys. Rev. 127, 131–141 (1962)

    Google Scholar 

  27. Kuch, W., Schneider, C.M.: Magnetic dichroism in valence band photoemission. Rep. Prog. Phys. 64, 147–204 (2001)

    Google Scholar 

  28. Braun, J., Borstel, G.: Relativistic photoemission theory applied to GaAs(110). Phys. Rev. B 48, 14373–14380 (1993)

    Google Scholar 

  29. Eckardt, H., Fritsche, L., Noffke, J.: Self-consistent relativistic band structure of the noble metals. J. Phys. F Met. Phys. 14, 97–112 (1984)

    Google Scholar 

  30. Krasovskii, E.E., Schattke, W., Jiříček, P., Vondráček, M., Krasovska, O.V., Antonov, N.V., Shpak, A.P., Bartoš, I.: Photoemission from Al(100) and (111): experiment and ab initio theory. Phys. Rev. B 78, 165406, 9 pages (2008)

    Google Scholar 

  31. Feibelman, P.: Surface electromagnetic fields. Progr. Surf. Sci. 12, 284–408 (1982)

    Google Scholar 

  32. Gartland, P.O., Berge, S., Slagsvold, B.J.: Surface-effect characteristics of photoemission from clean copper-crystal surface. Phys. Rev. Lett. 30, 916–919 (1973)

    Google Scholar 

  33. Gartland, P.O., Slagsvold, B.J.: Transitions conserving parallel momentum in photo emission from the (111) face of copper. Phys. Rev. B 12, 4047–4058 (1975)

    Google Scholar 

  34. Pedersoli, E., Greaves, C.M.R., Wan, W., Coleman-Smith, C., Padmore, H.A., Pagliara, S., Cartella, A., Lamarca, F., Ferrini, G., Galimberti, G., Montagnese, M.: dal Conte, S., Parmigiani, F.: Surface and bulk contribution to Cu(111) quantum efficiency. Appl. Phys. Lett. 93, 183505, 3 pages (2008)

    Google Scholar 

  35. Lobo-Checa, J., Ortega, J.E., Mascaraque, A., Michel, E.G., Krasovskii, E.E.: Effect of photoelectron mean free path on the photoemission cross-section of Cu(111) and Ag(111) Shockley states. Phys. Rev. B 84, 245419, 6 pages (2011)

    Google Scholar 

  36. Rios Rubiano, C.A., Gravielle, M.S., Mitnik, D.M., Silkin, V.M.: Band-structure effects in photoelectron-emission spectra from metal surfaces. Phys. Rev. A 85, 043422, 8 pages (2012)

    Google Scholar 

  37. Bisio, F., Nývlt, M., Franta, J., Petek, H., Kirschner, J.: Mechanisms of high-order perturbative photoemission from Cu(001). Phys. Rev. Lett. 96, 087601, 4 pages (2006)

    Google Scholar 

  38. Roth, S., Leuenberger, D., Osterwalder, J., Dahl, J.E., Carlson, R.M.K., Tkachenko, B.A., Fokin, A.A., Schreiner, P.R., Hengsberger, M.: Negative-electron-affinity diamondoid monolayers as high-brilliance source for ultrashort electron pulses. Chem. Phys. Lett. 495, 102–108 (2010)

    Google Scholar 

  39. Feder, R. (ed.): Polarized Electrons in Surface Physics. World Scientific Publications, Singapore (1985)

    Google Scholar 

  40. Kirschner, J.: Polarized Electrons at Surfaces (Springer Tracts in Modern Physics), vol. 106. Springer, Berlin (1985)

    Google Scholar 

  41. Heinzmann, U.: Angle-, energy- and spin-resolved photoelectron emission using circularly polarized synchrotron radiation. Phys. Scr. T17, 77–88 (1987)

    Google Scholar 

  42. Johnson, P.D.: Spin-polarized photoemission. Rep. Prog. Phys. 60, 1217–1304 (1997)

    Google Scholar 

  43. Winkelmann, A., Lin, W.-C., Bisio, F., Petek, H., Kirschner, J.: Interferometric control of spin-polarized electron populations at a metal surface observed by multiphoton photoemission. Phys. Rev. Lett. 100, 206601, 4 pages (2008)

    Google Scholar 

  44. Chiang, C.-T., Winkelmann, A., Henk, J., Bisio, F., Kirschner, J.: Spin-selective pathways in linear and nonlinear photoemission from ferromagnets. Phys. Rev. B 85, 165137, 4 pages (2012)

    Google Scholar 

  45. Tusche, C., Ellguth, M., Ünal, A.A., Chiang, C.-T., Winkelmann, A., Krasyuk, A., Hahn, M., Schönhense, G., Kirschner, J.: Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Appl. Phys. Lett. 99, 032505, 3 pages (2011)

    Google Scholar 

  46. Marx, G.K.L., Elmers, H.J., Schönhense, G.: Magneto-optical linear dichroism in threshold photoemission electron microscopy of polycrystalline Fe films. Phys. Rev. Lett. 84, 5888–5891 (2000)

    Google Scholar 

  47. Nakagawa, T., Yokoyama, T.: Magnetic circular dichroism near the fermi level. Phys. Rev. Lett. 96, 237402, 4 pages (2006)

    Google Scholar 

  48. Nakagawa, T., Yokoyama, T., Hosaka, M., Katoh, M.: Measurements of threshold photoemission magnetic dichroism using ultraviolet lasers and a photoelastic modulator. Rev. Sci. Instrum. 78, 023907, 5 pages (2007)

    Google Scholar 

  49. Dil, J.H.: Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001, 22 pages (2009)

    Google Scholar 

  50. Aeschlimann, M., Schmuttenmaer, C.A., Elsayed-Ali, H.E., Miller, R.J.D., Cao, J., Gao, Y., Mantell, D.A.: Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit. J. Chem. Phys. 102, 8606–8613 (1995)

    Google Scholar 

  51. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111. Springer, New York (1988)

    Google Scholar 

  52. Liebsch, A.: Electronic Excitations at Metal Surfaces. Plenum, New York (1997)

    Google Scholar 

  53. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)

    Google Scholar 

  54. Pitarke, J.M., Silkin, V.M., Chulkov, E.V., Echenique, P.M.: Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

    Google Scholar 

  55. Berini, P.: Long-range surface plasmon-polariton waveguides in silica. J. Appl. Phys. 102, 053105, 9 pages (2007)

    Google Scholar 

  56. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)

    Google Scholar 

  57. Kawata, S. (ed.): Near-Field Optics and Surface Plasmon Polaritons. Springer, Berlin (2001)

    Google Scholar 

  58. Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Google Scholar 

  59. Ozbay, E.: Plasmonics: merging plasmonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Google Scholar 

  60. Shalaev, V.M., Kawata, S. (eds.): Nanophotonics with Surface Plasmons. Elsevier, Amsterdam (2007)

    Google Scholar 

  61. Halas, N.J.: Plasmons in strongly coupled metallic nanostructures. Chem. Rev. Mod. Phys. 111, 3913–3961 (2011)

    Google Scholar 

  62. Stockman, M.I.: Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)

    Google Scholar 

  63. Kubo, A., Petek, H.: Femtosecond time-resolved photoemission electron microscope study of surface plasmon dynamics. J. Vac. Soc. Jap. (Japanese) 51(368–376) (2008)

    Google Scholar 

  64. Shalaev, V.M., Douketis, C., Haslett, T., Stuckless, T., Moskovits, M.: Two-photon electron emission from smooth and rough metal films in the threshold region. Phys. Rev. B 53, 11193–11206 (1996)

    Google Scholar 

  65. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Google Scholar 

  66. Geshev, P., Klein, S., Witting, T., Dickmann, K., Hietschold, M.: Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface. Phys. Rev. B 70, 075402, 16 pages (2004)

    Google Scholar 

  67. Gotschy, W., Vonmetz, K., Leitner, A., Aussenegg, F.R.: Optical dichroism of lithographically designed silver nanoparticle films. Optics Lett. 21, 1099–1101 (1996)

    Google Scholar 

  68. Kreibig, U., Vollmer, W.: Optical Properties of Metal Clusters. Springer, Berlin (1995)

    Google Scholar 

  69. Lehmann, J., Merschdorf, M., Pfeiffer, W., Thon, A., Voll, S., Gerber, G.: Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 85, 2921–2924 (2000)

    Google Scholar 

  70. Kennerknecht, C., Hovel, H., Merschdorf, M., Voll, S., Pfeiffer, W.: Surface plasmon assisted photoemission from Au nanoparticles on graphite. Appl. Phys. B 73, 425–429 (2001)

    Google Scholar 

  71. Merschdorf, M., Kennerknecht, C., Pfeiffer, W.: Collective and single-particle dynamics in time-resolved two-photon photoemission. Phys. Rev. B 70, 193401, 4 pages (2004)

    Google Scholar 

  72. Irvine, S.E., Dechant, A., Elezzabi, A.Y.: Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface Plasmons. Phys. Rev. Lett. 93, 184801, 4 pages (2004)

    Google Scholar 

  73. Yalunin, S.V., Gulde, M., Ropers, C.: Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B 84, 195426, 14 pages (2011)

    Google Scholar 

  74. Faraggi, M., Aldazabal, I., Gravielle, M.S., Arnau, A., Silkin, V.M.: Study of the induced potential produced by ultrashort pulses on metal surfaces. J. Opt. Soc. Am. B 26, 2331–2336 (2009)

    Google Scholar 

  75. Faraggi, M.N., Gravielle, M.S., Mitnik, D.M.: Interaction of ultrashort laser pulses with metal surfaces: impulsive jellium-Volkov approximation versus the solution of the time-dependent Schrödinger equation. Phys. Rev. A 76, 012903, 6 pages (2007)

    Google Scholar 

  76. Bagus, P.S., Ilton, E.S.: Effects of covalency on the p-shell photoemission of transition metals: MnO. Phys. Rev. B 73, 155110, 14 pages (2006)

    Google Scholar 

  77. Haverkort, M.W., Zwierzycki, M., Andersen, O.K.: Multiplet ligand-field theory using Wannier orbitals. Phys. Rev. B 85, 165113, 20 pages (2012)

    Google Scholar 

  78. Bagus, P.S., Broer, R., Ilton, E.S.: Atomic near-degeneracy for photoemission: generality of 4f excitations. J. Electron. Spectrosc. Relat. Phenom. 165, 46–49 (2008)

    Google Scholar 

  79. Bagus, P.S., Freeman, A.J., Sasaki, F.: Prediction of new multiplet structure in photoemission experiments. Phys. Rev. Lett. 30, 850–853 (1973)

    Google Scholar 

  80. Nelin, C.J., Bagus, P.S., Ilton, E.S., Chambers, S.A., Kuhlenbeck, H., Freund, H.-J.: Relationships between complex core level spectra and materials properties. Int. J. Quantum Chem. 110, 2752–2764 (2010)

    Google Scholar 

  81. Uldry, A., Vernay, F., Delley, B.: Systematic computation of crystal-field multiplets for x-ray core spectroscopies. Phys. Rev. B 85, 125133, 14 pages (2012)

    Google Scholar 

  82. Egelhoff Jr., W.F.: Core-level binding-energy shifts at surfaces and in solids. Surf. Sci. Rep. 6, 253–415 (1987)

    Google Scholar 

  83. de Groot, F., Kotani, A.: Core Level Spectroscopy of Solids. CRC Press, Boca Raton (2008)

    Google Scholar 

  84. Gerson, A.R., Bredow, T.: Interpretation of sulphur 2p XPS spectra in sulfide minerals by means of ab initio calculations. Surf. Interface Anal. 29, 145–150 (2000)

    Google Scholar 

  85. www.casaxps.comhelp_manualmanual_updatespeak_fitting_in_xps.pdf

    Google Scholar 

  86. Yamashita, T., Hayes, P.: Effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS. J. Electron. Spectrosc. Relat. Phenom. 152, 6–11 (2006)

    Google Scholar 

  87. Pratt, A.: Fine structure in XPS and XANES spectra acquired from a series of sphalerite samples. ECS Trans. 28, 95–103 (2010)

    Google Scholar 

  88. Harmer, S.L., Goncharova, L.V., Kolarova, R., Lennard, W.N., Munoz-Marquez, M.A., Mitchell, I.V., Nesbitt, H.W.: Surface structure of sphalerite studied by medium energy ion scattering and XPS. Surf. Sci. 601, 352–361 (2007)

    Google Scholar 

  89. Jirsak, T., Rodriguez, J.A., Chaturvedi, S., Hrbek, J.: Chemistry of SO2 on Ru(001): formation of SO3 and SO4. Surf. Sci. Rep. 418, 8–21 (1998)

    Google Scholar 

  90. Nesbitt, H.W., Schaufuss, A.G., Scaini, M., Bancroft, G.M., Szargan, R.: XPS measurement of fivefold and sixfold coordinated sulfur in pyrrhotites and evidence for millerite and pyrrhotite surface species. Am. Mineral. 86, 318–326 (2001)

    Google Scholar 

  91. Skinner, W.M., Nesbitt, H.W., Pratt, A.R.: XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS). Geochim. Cosmochim. Acta 68, 2259–2263 (2004)

    Google Scholar 

  92. Sinkovic, B., Johnson, P.D., Brookes, N.B.: Magnetic structure of oxidized Fe(001). Phys. Rev. Lett. 65, 1647–1650 (1990)

    Google Scholar 

  93. Tamura, E., Waddill, G.D., Tobin, J.G., Sterne, P.A.: Linear and circular dichroism in angle resolved Fe 3p photoemission. Phys. Rev. Lett. 73, 1533–1536 (1994)

    Google Scholar 

  94. Tait, S.L., Wang, Y., Costantini, G., Lin, N., Baraldi, A., Esch, F., Petaccia, L., Lizzit, S., Kern, K.: Metal-organic coordination interactions in Fe-terephthalic acid networks on Cu(100). J. Am. Chem. Soc. 130, 2108–2113 (2008)

    Google Scholar 

  95. Jungblut, R., Roth, Ch., Hillebrecht, F.U., Kisker, E.: Spin-polarized electron spectroscopy as a combined chemical and magnetic probe. Surf. Sci. 269/270, 615–621 (1992)

    Google Scholar 

  96. Van Campen, D.G., Pouliot, R.J., Klebanoff, L.E.: Spin-resolved x-ray-photoelectron-spectroscopy study of ferromagnetic iron. Phys. Rev. B 48, 17535, 5 pages (1993)

    Google Scholar 

  97. Roth, C., Hillebrecht, F.U., Rose, H.B., Kisker, E.: Linear magnetic dichroism in angular resolved Fe 3p core level photoemission. Phys. Rev. Lett. 70, 3479–3482 (1993)

    Google Scholar 

  98. Roth, C., Rose, H.B., Hillebrecht, F.U., Kisker, E.: Magnetic linear dichroism in soft X-ray core level photoemission from iron. Solid State Commun. 86, 647–650 (1993)

    Google Scholar 

  99. Rossi, G., Sirotti, F.: 3p Fine structure of ferromagnetic Fe and Co from photoemission with linearly polarized light. Solid State Commun. 90, 557–562 (1994)

    Google Scholar 

  100. Tobin, J.G., Goodman, K.W., Schumann, F.O., Willis, R.F., Kortright, J.B., Denlinger, J.D., Rotenberg, E., Warwick, A., Smith, N.V.: Generalized description of magnetic x-ray circular dichroism in Fe 3p photoelectron emission. J. Vac. Sci. Technol. A 15, 1766–1769 (1997)

    Google Scholar 

  101. Huang, D.-J., Riffe, D.M., Erskine, J.I.: Simultaneous determination of Fe 3p spin–orbit and exchange splittings in photoemission. Phys. Rev. B 51, 15170–15179 (1995)

    Google Scholar 

  102. Bansmann, J., Lu, L., Meiwes-Broer, K.H., Schlatholter, T., Braun, J.: Relationship between magnetic circular and linear dichroism in photoemission from Fe 3p core level: an experimental and theoretical investigation. Phys. Rev. B 60, 13860–13868 (1999)

    Google Scholar 

  103. Liu, Y., Xu, Z., Johnson, P.D., van der Laan, G.: Spin–orbit coupling, exchange interaction, and hybridization in the photoexcitation of the Ni 3p core level. Phys. Rev. B 52, R8593–R8596 (1995)

    Google Scholar 

  104. Thompson, A., et al. (eds.): X-Ray Data Booklet. Lawrence Berkeley National Laboratory, Berkeley, CA (2009)

    Google Scholar 

  105. http://xdb.lbl.gov

  106. Yeh, J.J., Lindau, I.: Atomic subshell photoionization cross sections and assymetry parameters: 1 < Z < 103. At. Data. Nucl. Data Tables 32, 1–155 (1985)

    Google Scholar 

  107. Ferguson, I.: Auger Microprobe Analysis. Adam Hilger, Bristol (1989)

    Google Scholar 

  108. Powell, C.J., Jablonski, A.: Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Meth. Phys. Res. A 601, 54–65 (2009)

    Google Scholar 

  109. Jablonski, A., Powell, C.J.: Practical expressions for the mean escape depth, the information depth, and the effective attenuation length in Auger-electron spectroscopy and x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 27, 253–261 (2009)

    Google Scholar 

  110. Jablonski, A., Powell, C.J.: Improved analytical formulae for correcting elastic-scattering effects in X-ray photoelectron spectroscopy. Surf. Sci. 604, 327–336 (2010)

    Google Scholar 

  111. Powell, C.J., Jablonski, A.: Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J. Electron. Spectrosc. Relat. Phenom. 178–179, 331–346 (2010)

    Google Scholar 

  112. Tanuma, S., Powell, C.J., Penn, D.R.: Calculations of electron inelasticmean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011)

    Google Scholar 

  113. Seah, M.P.: An accurate and simple universal curve for the energy-dependent electron inelastic mean free path. Surf. Interface Anal. 44, 497–503 (2012)

    Google Scholar 

  114. Nakajima, R., Stöhr, J., Idzerda, Y.U.: Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys. Rev. B 59, 6421–6429 (1999)

    Google Scholar 

  115. Frazer, B.H., Gilbert, B., Sonderegger, B.R., De Stasio, G.: The probing depth of total electron yield in the sub-keV range: TEY-XAS and X-PEEM. Surf. Sci. Rep. 537, 161–167 (2003)

    Google Scholar 

  116. Dreiner, S., Schurmann, M., Westphal, C.: Structural analysis of the SiO2/Si(100) interface by means of photoelectron diffraction. Phys. Rev. Lett. 93, 126101, 4 pages (2004)

    Google Scholar 

  117. Woodruff, D.P.: Surface structural information from photoelectron diffraction. J. Electron. Spectrosc. Relat. Phenom. 178–179, 186–194 (2010)

    Google Scholar 

  118. Sébilleau, D., Natoli, C.R.: Some insight into the convergence of the multiple scattering series expansion. In: 14th Int. Conf. on X-Ray Absorption Fine Structure (XAFS14) 2009, pp. 1–12. J. Phys. Conf. Ser. (2009)

    Google Scholar 

  119. Sébilleau, D., Natoli, C., Gavaza, G.M., Zhao, H., Da Pieve, F., Hatada, K.: MsSpec-1.0: a multiple scattering package for electron spectroscopies in material science. Comput. Phys. Commun. 182, 2567–2579 (2011)

    Google Scholar 

  120. Fadley, C.S.: X-ray photoelectron spectroscopy: progress and perspectives. J. Electron. Spectrosc. Relat. Phenom. 178–179, 2–32 (2010)

    Google Scholar 

  121. Henke, B.L., Smith, J.A., Attwood, D.T.: 0.1-10-keV x-ray-induced electron emissions from solids: models and secondary electron measurements. J. Appl. Phys. 48, 1852–1866 (1977)

    Google Scholar 

  122. Henke, B.L., Liesegang, J., Smith, S.D.: Soft-x-ray-induced secondary-electron emission from semiconductors and insulators: models and measurements. Phys. Rev. B 19, 3004–3021 (1979)

    Google Scholar 

  123. Stöhr, J.: NEXAFS Spectroscopy. Springer, Berlin (1992)

    Google Scholar 

  124. Kasrai, M., Brown, J.R., Bancroft, G.M., Yin, Z., Tan, K.H.: Sulphur characterization in coal from X-ray absorption near edge spectroscopy. Int. J. Coal Geol. 32, 107–135 (1996)

    Google Scholar 

  125. Henke, B.L., Lee, P., Tanaka, T.J., Skimabukuro, R.L., Fujikawa, B.K.: Low-energy X-ray interaction coefficients: photoabsorption, scattering and reflection, E = 100-2000 eV, Z = 1–94. At. Data. Nucl. Data Tables 27, 1–144 (1982)

    Google Scholar 

  126. Henke, B.L., Gullikson, E.M., Davis, J.C.: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1–92. At. Data. Nucl. Data Tables 54, 181–342 (1993)

    Google Scholar 

  127. www-cxro.lbl.gov/optical_constants/

    Google Scholar 

  128. Stöhr, J., Siegmann, H.C.: Magnetism. Springer, Berlin (2006)

    Google Scholar 

  129. Beth, R.A.: Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)

    Google Scholar 

  130. Stewart, A.M.: Angular momentum of the electromagnetic field: the plane wave paradox resolved. Eur. J. Phys. 26, 635–641 (2005)

    Google Scholar 

  131. Mansuripur, M.: Angular momentum of circularly polarized light in dielectric media. Opt. Express 13, 5315–5324 (2005)

    Google Scholar 

  132. Papaconstantopoulos, D.A.: Handbook of the Band Structure of Elemental Solids. Plenum, New York (1986)

    Google Scholar 

  133. Stöhr, J.: Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999)

    Google Scholar 

  134. Wilhelm, F., Poulopoulos, P., Srivastava, P., Wende, H., Farle, M., Baberschke, K., Angelakeris, M., Flevaris, N.K., Grange, W., Kappler, J.-P., Ghiringhelli, G., Brookes, N.B.: Magnetic anisotropy energy and the anisotropy of the orbital moment of Ni in Ni/Pt multilayers. Phys. Rev. B 61, 8647–8650 (2000)

    Google Scholar 

  135. Arai, K., Okuda, T., Tanaka, A., Kotsugi, M., Fukumoto, K., Oura, M., Senba, Y., Ohashi, H., Nakamura, T., Matsushita, T., Muro, T., Kakizaki, A., Kinoshita, T.: Complete assignment of spin domains in antiferromagnetic NiO(100) by photoemission electron microscopy and cluster model calculation. J. Phys. Soc. Jpn. 79, 013703, 4 pages (2010)

    Google Scholar 

  136. Kunes, J., Oppeneer, P.M.: Anisotropic x-ray magnetic linear dichroism at the L2,3 edges of cubic Fe, Co, and Ni:Ab initio calculations and model theory. Phys. Rev. B 67, 024431, 9 pages (2003)

    Google Scholar 

  137. Spaldin, N.A., Cheong, S.-W., Ramesh, R.: Multiferroics: past, present, and future. Phys. Today 63, 38–43 (2010)

    Google Scholar 

  138. Bauer, E., Browne, H.N.: Elastic Scattering of Electrons by the Many-Electron Atom. In: McDowell, M.R.C. (ed.) Proc. 3rd Int. Conf. on the Physics of Electronic and Atomic Collisions, London 1963. Atomic Collision Processes, pp. 16–27. North-Holland, Amsterdam (1964)

    Google Scholar 

  139. Bauer, E.: Interaction of slow electrons with surfaces. J. Vac. Sci. Technol. 7, 3–12 (1970)

    Google Scholar 

  140. Bauer, E.: Interaction of slow electrons with randium-jellium. In: Les Interactions des Electrons avec la Matiere Condensee. Applications a I'Etude du Solide. pp. 42–96. AVCP (1972)

    Google Scholar 

  141. Bauer, E.: Low Energy Electron Diffraction (LEED) and Auger Methods. In: Gomer, R. (ed.) Interactions on Metal Surfaces, pp. 225–274. Springer, Berlin (1975)

    Google Scholar 

  142. Bauer, E., Telieps, W.: Low energy electron microscopy. In: Scanning Microscopy, vol. Suppl. 1. pp. 99–108. Scanning Microscopy Int., Chicago (1987)

    Google Scholar 

  143. Bauer, E.: Low energy electron microscopy and normal incidence VLEED. In: Koukal, J. (ed.) Physics of Solid Surfaces. Studies in Surface Science and Catalysis, vol. 40, pp. 26–36. Elsevier, Amsterdam (1988)

    Google Scholar 

  144. Bauer, E., Telieps, W.: Emission and low energy reflection electron microscopy. In: Howie, A., Valdre, U. (eds.) Surface and Interface Characterization by Electron Optical Methods, vol. 191 NATO ASI Series B: Physics, pp. 195–233. Plenum, New York (1988)

    Google Scholar 

  145. Bauer, E.: Low energy electron microscopy. Rep. Prog. Phys. 57, 895–938 (1994)

    Google Scholar 

  146. Bauer, E.: LEEM basics. Surf. Rev. Lett. 5, 1275–1286 (1998)

    Google Scholar 

  147. Berger, M.J., Seltzer, S.M., Wang, R., Schechter, A.: NISTIR Report No. 5188. In. Database ELAST (1993)

    Google Scholar 

  148. Jablonski, A., Salvat, F., Powell, C.J.: NIST Standard Reference Database 64 version 3.1. (2003)

    Google Scholar 

  149. www.nist.gov/srd/nist64.htm.

  150. Elastic scattering of electrons and positrons, ICRU report no. 77. In. ICRU – International Commission on Radiation Units and Measurements. (2007)

    Google Scholar 

  151. Salvat, F., Jablonski, A., Powell, C.J.: ELSEPA-Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 165, 157–190 (2005)

    Google Scholar 

  152. Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice Hall, Englewood-Cliffs, NJ (1963)

    Google Scholar 

  153. Fink, M., Martin, M.R., Somorjai, G.A.: Comparison of backscattering intensities for low energy electrons from various surface atoms (H, Li, Be, C, 0, Al, Si, S, V, Cr, Ni, Cu, Ag, Pt, Au). Surf. Sci. 29, 303–308 (1972)

    Google Scholar 

  154. Snow, E.C.: Self-consistent energy bands of metallic copper by the augmented-plane-wave method. II. Phys. Rev. 171, 785–789 (1968)

    Google Scholar 

  155. Schmid, R., Gaukler, K.H., Seiler, H.: Measurement of elastically reflected electrons (E ≤ 2.5 keV) for imaging of surfaces in a simple ultra high vacuum scanning electron microscope. In: Scanning Electron Microscopy vol. II, pp. 501–509. Scanning Electron Microscopy, Inc., O’Hare, Chicago (1983)

    Google Scholar 

  156. Gergely, G.: Elastic backscattering of electrons: determination of physical parameters of electron transport processes by elastic peak electron spectroscopy. Prog. Surf. Sci. 71, 31–88 (2002)

    Google Scholar 

  157. Schilling, J.S., Webb, M.B.: Low-energy electron diffraction from liquid Hg: multiple scattering, scattering factor, and attenuation. Phys. Rev. B 2, 1665–1676 (1970)

    Google Scholar 

  158. Dietzel, W., Meister, G., Bauer, E.: Elastic and inelastic backscattering of slow electrons from silicon. Z. Phys. B 47, 189–194 (1982)

    Google Scholar 

  159. Rösler, M., Brauer, W., Devooght, J., Dehaes, J.-C., Dubus, A., Cailler, M., Ganachaud, J.-P.: Particle Induced Electron Emission. Springer, Berlin (1991)

    Google Scholar 

  160. Ding, Z.-J., Shimizu, R.: A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning 18, 92–113 (1996)

    Google Scholar 

  161. Dapor, M.: Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering. Springer, Berlin (2003)

    Google Scholar 

  162. Salvat, F., Fernandez-Varea, J.M.: Overview of physical interaction models for photon and electron transport used in Monte Carlo codes. IOP Publ. Metrol. 46, S112–S138 (2009)

    Google Scholar 

  163. Fitting, H.-J., Schreiber, E., Kuhr, J.-C., von Czarnowski, A.: Attenuation and escape depths of low-energy electron emission. J. Electron. Spectrosc. Relat. Phenom. 119, 35–47 (2001)

    Google Scholar 

  164. Kuhr, J.-C., Fitting, H.-J.: Monte Carlo simulation of electron emission from solids. J. Electron. Spectrosc. Relat. Phenom. 105, 257–273 (1999)

    Google Scholar 

  165. Penn, D.R.: Electron mean-free-path calculations using a model dielectric function. Phys. Rev. B 35, 482–486 (1987)

    Google Scholar 

  166. Ding, Z.-J., Shimizu, R.: Inelastic collisions of kV electrons in solids. Surf. Sci. 222, 313–331 (1989)

    Google Scholar 

  167. Tanuma, S., Shiratori, T., Kimura, T., Goto, K., Ichimura, S., Powell, C.J.: Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 eV energy range by elastic-peak electron spectroscopy. Surf. Interface Anal. 37, 833–845 (2005)

    Google Scholar 

  168. Penn, D.R.: Electron mean free paths for free-electron-like materials. Phys. Rev. B 13, 5248–5254 (1976)

    Google Scholar 

  169. McRae, E.G.: Calculation of absorptive potentials for low energy electron scattering from optical data for solid Mg, Al, Cu, Ag, Au, Bi, C and Al2O3. Surf. Sci. Rep. 57, 761–765 (1976)

    Google Scholar 

  170. Ziaja, B., London, R.A., Hajdu, J.: Ionization by impact electrons in solids: electron mean free path fitted over a wide energy range. J. Appl. Phys. 99, 033514, 9 pages (2006)

    Google Scholar 

  171. Qian, Z., Sahni, V.: Quantum mechanical image potential theory. Phys. Rev. B 66, 205103, 4 pages (2002)

    Google Scholar 

  172. Qian, Z., Sahni, V.: Exact electronic properties in the classically forbidden region of a metal surface. Int. J. Quantum Chem. 104, 929–945 (2005)

    Google Scholar 

  173. Jones, R.O., Jennings, P.J.: LEED fine structure: origin and applications. Surf. Sci. Rep. 9, 165–196 (1988)

    Google Scholar 

  174. Jennings, P.J., Jones, R.O., Weinert, M.: Surface barrier for electrons in metals. Phys. Rev. B 37, 6113–6120 (1988)

    Google Scholar 

  175. Malmstrom, G., Rundgren, J.: A program for calculation of the reflection and transmission of electrons through a surface potential barrier. Comput. Phys. Commun. 19, 263–270 (1980)

    Google Scholar 

  176. Manghi, F.: Nonlocal exchange and correlation in surface calculations: an application to GaAs(110). Phys. Rev. B 33, 2554–2558 (1986)

    Google Scholar 

  177. White, D., Godby, R.W., Rieger, M.M., Needs, R.J.: Dynamic image potential at an Al(111) surface. Phys. Rev. Lett. 80, 4265–4268 (1998)

    Google Scholar 

  178. Heinrichsmeier, M., Fleszar, A., Hanke, W., Eguiluz, A.G.: Nonlocal density-functional calculations of the surface electronic structure of metals: application to aluminum and palladium. Phys. Rev. B 57, 14974–14982 (1998)

    Google Scholar 

  179. Chulkov, E.V., Silkin, V.M., Echenique, P.M.: Image potential states on metal surfaces: binding energies and wave functions. Surf. Sci. 437, 330–352 (1999)

    Google Scholar 

  180. Tsirkin, S.S., Eremeev, S.V., Chulkov, E.V.: Model pseudopotential for the (110) surface of fcc noble metals. Surf. Sci. 604, 804–810 (2010)

    Google Scholar 

  181. Hanuschkin, A., Wortmann, D., Blügel, S.: Image potential and field states at Ag(100) and Fe(110) surfaces. Phys. Rev. B 76, 165417, 6 pages (2007)

    Google Scholar 

  182. Jennings, P.J.: Surface barrier effects in low-energy electron diffraction. Surf. Sci. 25, 513–525 (1971)

    Google Scholar 

  183. Herlt, H.-J.: Elastische Rückstreuung sehr langsamer Elektronen an reinen und an gasbedeckten Wolfram-Einkritalloberflächen. Ph.D. thesis, TU Clausthal (1982)

    Google Scholar 

  184. Herlt, H.-J., Feder, R., Meister, G., Bauer, E.: Experiment and theory of the elastic electron reflection coefficient from tungsten. Solid State Commun. 38, 973–976 (1981)

    Google Scholar 

  185. Jones, R.O., Jennings, P.J.: Fine-structure analysis of spin-polarized low-energy electron diffraction from W(001). Phys. Rev. B 27, 4702–4711 (1983)

    Google Scholar 

  186. Andersson, S.: Low-energy electron diffraction intensities from the clean cooper (001) surface. Surf. Sci. 18, 325–340 (1969)

    Google Scholar 

  187. Bartos, I., Koukal, J.: On electron damping in VLEED. Surf. Sci. 251/252, 508–510 (1991)

    Google Scholar 

  188. Bartos, I., van Hove, M.A., Altman, M.S.: Cu(111) electron band structure and channeling by VLEED. Surf. Sci. 352–354, 660–664 (1996)

    Google Scholar 

  189. Sanche, L.: Transmission of 0–15 eV monoenergetic electrons through thin-film molecular solids. J. Chem. Phys. 71, 4860–4881 (1979)

    Google Scholar 

  190. Komolov, S.A., Chadderton, L.T.: Total current spectroscopy. Surf. Sci. 90, 359–380 (1979)

    Google Scholar 

  191. Plenkiewicz, B., Plenkiewicz, P., Perluzzo, G., Jay-Gerin, J.-P.: Analysis of low-energy electron transmission experiments through thin solid xenon films in the elastic scattering region. Phys. Rev. B 32, 1253–1256 (1985)

    Google Scholar 

  192. Bader, G., Perluzzo, G., Caron, L.G., Sanche, L.: Elastic and inelastic mean-free-path determination in solid xenon from electron transmission experiments. Phys. Rev. B 26, 6019–6029 (1982)

    Google Scholar 

  193. Kessler, B., Eyers, A., Horn, K., Muller, N., Schmiedeskamp, B., Schonhense, G., Heinzmann, U.: Determination of xenon valence and conduction bands by spin-polarized photoemission. Phys. Rev. Lett. 59, 331–334 (1987)

    Google Scholar 

  194. Goulet, T., Jung, J.-M., Michaud, M., Jay-Gerin, J.-P., Sanche, L.: Conduction-band density of states in solid argon revealed by low-energy-electron backscattering from thin films: role of the electron mean free path. Phys. Rev. B 50, 5101–5109 (1994)

    Google Scholar 

  195. Pan, X., Sanche, L.: Mechanism and site of attack for direct damage to DNA by low-energy electrons. Phys. Rev. Lett. 94, 198104, 4 pages (2005)

    Google Scholar 

  196. Caron, L.G., Sanche, L.: Low-energy electron diffraction and resonances in DNA and other helical macromolecules. Phys. Rev. Lett. 91, 113201, 4 pages (2003)

    Google Scholar 

  197. Caron, L., Sanche, L., Tonzani, S., Greene, C.H.: Low-energy electron scattering from DNA including structural water and base-pair irregularities. Phys. Rev. A 80, 012705, 6 pages (2009)

    Google Scholar 

  198. Orlando, T.M., Oh, D., Chen, Y., Aleksandrov, A.B.: Low-energy electron diffraction and induced damage in hydrated DNA. J. Chem. Phys. 128, 195102, 7 pages (2008)

    Google Scholar 

  199. Bass, A.D., Sanche, L.: Absolute and effective cross-sections for low-energy electron-scattering processes within condensed matter. Radiat. Environ. Biophys. 37, 243–257 (1998)

    Google Scholar 

  200. Sanche, L.: Primary interactions of low energy electrons in condensed matter. In: Ferradini, C., Jay-Gerin, J.-P. (eds.) Excess Electrons in Dielectric Media, pp. 1–42. CRC Press, Boca Raton (1991)

    Google Scholar 

  201. Bass, A., Sanche, L.: Interactions of Low-Energy Electrons with Atomic and Molecular Solids. In: Hatano, Y., Mozumder, A. (eds.) Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical and Biological Consequences with Applications, pp. 207–257. Marcel Dekker, New York (2004)

    Google Scholar 

  202. Sanche, L.: Nanoscale dynamics of radiosensitivity: role of low energy electrons. In: Gómez-Tejedor, G., Fuss, M.C. (eds.) Radiation Damage in Biomolecular Systems, pp. 3–44. Springer, Dordrecht (2012)

    Google Scholar 

  203. Andersson, S.: Plasmon thresholds in the secondary electron yield – I experiment. Solid State Commun. 11, 1401–1404 (1972)

    Google Scholar 

  204. Komolov, S.A.: Total Current Spectroscopy of Surfaces. Gordon and Breach, Philadephia, PA (1992)

    Google Scholar 

  205. Strocov, V.N.: Unoccupied band structure of layered materials by very-low-energy electron diffraction: implications in photoemission. In: Hughes, H.P., Starnberg, H.I. (eds.) Electron Spectroscopies Applied to Low-Dimensional Structures, pp. 161–208. Kluwer, New York (2000)

    Google Scholar 

  206. Krasovskii, E.E., Schattke, W., Strocov, V.N., Claessen, R.: Unoccupied band structure of NbSe2 by very low-energy electron diffraction: experiment and theory. Phys. Rev. B 66, 235403, 11 pages (2002)

    Google Scholar 

  207. Barrett, N., Krasovskii, E.E., Themlin, J.-M., Strocov, V.N.: Elastic scattering effects in the electron mean free path in a graphite overlayer studied by photoelectron spectroscopy and LEED. Phys. Rev. B 71, 035427, 9 pages (2005)

    Google Scholar 

  208. Strocov, V.N., Krasovskii, E.E., Schattke, W., Barrett, N., Berger, H., Schrupp, D., Claessen, R.: Three-dimensional band structure of layered TiTe2: photoemission final-state effects. Phys. Rev. Lett. B 74, 195125, 14 pages (2006)

    Google Scholar 

  209. Krasovskii, E.E., Strocov, V.N.: Very-low-energy electron diffraction from TiS2: experiment and ab initio theory. J. Phys. Condens. Matter 21, 314009, 7 pages (2009)

    Google Scholar 

  210. Rundgren, J.: Optimized surface-slab excited-state muffin-tin potential and surface core level shifts. Phys. Rev. B 68, 125405, 9 pages (2003)

    Google Scholar 

  211. Krasovskii, E.E., Schattke, W.: Surface electronic structure with the linear methods of band theory. Phys. Rev. B 56, 12874–12883 (1997)

    Google Scholar 

  212. Krasovskii, E.E.: Augmented-plane-wave approach to scattering of Bloch electrons by an interface. Phys. Rev. B 70, 245322, 11 pages (2004)

    Google Scholar 

  213. Thomas, R.E.: Interference effects in the reflection of low-energy electrons from thin films of Au on Ir. J. Appl. Phys. 41, 5330–5334 (1970)

    Google Scholar 

  214. Jonker, B.T., Bartelt, N.C., Park, R.L.: Quantum size effect in electron transmission through Cu and Ag films on W(110). Surf. Sci. 127, 183–199 (1983)

    Google Scholar 

  215. Born, M., Wolf, E.: Principles of Optics, p. 628. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  216. Perluzzo, G., Bader, G., Caron, L.G., Sanche, L.: Direct determination of electron band energies by transmission interference in thin films. Phys. Rev. Lett. 55, 545–548 (1985)

    Google Scholar 

  217. Jalochowski, M., Bauer, E.: Quantum size and surface effects in the electrical resistivity and high-energy electron refiectivity of ultrathin lead films. Phys. Rev. B 38, 5272–5280 (1988)

    Google Scholar 

  218. Kerkmann, D., Pescia, D., Krewer, J.W., Vescovo, E.: Low energy electron oscillations during epitaxial growth of thin films. Z. Phys. B 85, 311–314 (1991)

    Google Scholar 

  219. Chiang, T.-C.: Photoemission studies of quantum well states in thin films. Surf. Sci. Rep. 39, 181–235 (2000)

    Google Scholar 

  220. Wurm, K.: Spin-polarisierte LEEM-Untersuchungen an dunnen Kobalt-Epitaxieschichten auf W(110). M.S. thesis, Technische Universität Clausthal (1994)

    Google Scholar 

  221. Egger, S., Back, C.H., Krewer, J., Pescia, D.: A spin selective electron interferometer. Phys. Rev. Lett. 83, 2833–2836 (1999)

    Google Scholar 

  222. Pendry, J.B.: Low Energy Electron Diffraction. Academic Press, London (1974)

    Google Scholar 

  223. Van Hove, M.A., Tong, S.Y.: Surface Crystallography by LEED. Springer, Berlin (1979)

    Google Scholar 

  224. Heinz, K., Müller, K.: LEED intensities – experimental progress and new possibilities of surface structure determination. In: Structural Studies of Surfaces (Springer Tracts in Modern Physics), vol. 91, pp. 1–53. Springer, Berlin (1982)

    Google Scholar 

  225. Marcus, P.M., Jona, F. (eds.): Determination of Surface Structure by LEED. Plenum, New York (1984)

    Google Scholar 

  226. Van Hove, M.A., Weinberg, W.H., Chen, C.-M.: Low-Energy Electron Diffraction. Springer, Berlin (1986)

    Google Scholar 

  227. Heinz, K.: LEED and DLEED as modern tools for quantitative surface structure determination. Rep. Prog. Phys. 58, 637–704 (1995)

    Google Scholar 

  228. Garcıa de Abajo, F.J., Van Hove, M.A., Fadley, C.S.: Multiple scattering of electrons in solids and molecules: a cluster-model approach. Phys. Rev. B 63, 075404, 16 pages (2001)

    Google Scholar 

  229. Soares, E.A., de Castilho, C.M.C., de Carvalho, V.E.: Advances on surface structural determination by LEED. J. Phys. Condens. Matter 23, 303001, 19 pages (2011)

    Google Scholar 

  230. Feder, R.: Spin-polarised low-energy electron diffraction. J. Phys. C Solid State Phys. 14, 2049–2091 (1981)

    Google Scholar 

  231. Elmers, H.-J.: Spin-polarized low-energy electron diffraction. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials. John Wiley & Sons, Chichester (2007)

    Google Scholar 

  232. Henzler, M.: Defects in surface structure: informations with LEED. In: Advances in Solid State Physics, vol. 19. pp. 193–205. Vieweg, Braunschweig (1979)

    Google Scholar 

  233. Henzler, M.: Measurments of surface defects. Appl. Phys. A 34, 205–214 (1984)

    Google Scholar 

  234. Henzler, M.: Quantitative analysis of LEED spot profiles. In: Van Hove, M.H., Tong, S.Y. (eds.) The Structure of Surfaces (Springer Series in Surface Science), vol. 2, pp. 351–357. Springer, Berlin (1985)

    Google Scholar 

  235. Lagally, M.G.: Diffraction Techniques. In: Park, R.L., Lagally, M.G. (eds.) Solid State Physics: Surfaces, pp. 237–298. Academic Press, Orlando, FL (1985)

    Google Scholar 

  236. Park, R.L., Houston, J.E., Schreiner, D.G.: The LEED instrument response function. Rev. Sci. Instrum. 42, 60–65 (1971)

    Google Scholar 

  237. Comsa, G.: Coherence length and/or transfer width? Surf. Sci. 81, 57–68 (1979)

    Google Scholar 

  238. Lu, T.-M., Lagally, M.G.: The resolving power of a low-energy electron diffractometer and the analysis of surface defects. Surf. Sci. 99, 695–713 (1980)

    Google Scholar 

  239. Vuorinen, J., Pussi, K., Diehl, R.D., Lindroos, M.: Correlation of electron self-energy with geometric structure in low-energy electron diffraction. J. Phys. Condens. Matter 24, 015003, 7 pages (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, E. (2014). Basic Interactions. In: Surface Microscopy with Low Energy Electrons. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0935-3_2

Download citation

Publish with us

Policies and ethics