Skip to main content

Genetics of Puberty

  • Chapter
  • First Online:

Abstract

Genetics is an important determinant in the timing of puberty. Genes such as KISS1 and TAC3 were discovered while studying specific cases of idiopathic hypogonadotropic hypogonadism and are now believed to play a critical role in normal puberty. MKRN3, which was found while studying central precocious puberty, is the most recent addition to the list of genes responsible for puberty. Genome-wide association studies have also made breakthroughs in other genes, such as LIN28B, involved in the process of puberty. This chapter will discuss the aforementioned genes and their roles in normal puberty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gajdos ZK, Hirschhorn JN, Palmert MR. What controls the timing of puberty? An update on progress from genetic investigation. Curr Opin Endocrinol Diabetes Obes. 2009;16:16–24.

    Article  PubMed  Google Scholar 

  2. Palmert MR, Hirschhorn JN. Genetic approaches to stature, pubertal timing, and other complex traits. Mol Genet Metab. 2003;80(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Loesch DZ, Hopper JL, Rogucka E, Huggins RM. Timing and genetic rapport between growth in skeletal maturity and height around puberty: similarities and differences between girls and boys. Am J Hum Genet. 1995;56(3):753–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Meyer JM, Eaves LJ, Heath AC, Martin NG. Estimating genetic influences on the age-at-menarche: a survival analysis approach. Am J Med Genet. 1991;39(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  5. Susman EJ, Houts RM, Steinberg L, Belsky J, Cauffman E, Dehart G, et al; Eunice Kennedy Shriver NICHD Early Child Care Research Network. Longitudinal development of secondary sexual characteristics in girls and boys between ages 91/2 and 151/2 years. Arch Pediatr Adolesc Med. 2010;164(2):166–73.

    Google Scholar 

  6. Pickles A, Pickering K, Simonoff E, Silberg J, Meyer J, Maes H. Genetic “clocks” and “soft” events: a twin model for pubertal development and other recalled sequences of developmental milestones, transitions, or ages at onset. Behav Genet. 1998;28(4):243–53.

    Article  CAS  PubMed  Google Scholar 

  7. van den Berg SM, Setiawan A, Bartels M, Polderman TJ, van der Vaart AW, Boomsma DI. Individual differences in puberty onset in girls: Bayesian estimation of heritabilities and genetic correlations. Behav Genet. 2006;36(2):261–70.

    Article  PubMed  Google Scholar 

  8. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24(5):668–93.

    Article  PubMed  Google Scholar 

  9. Frisch RE, Revelle R. Height and weight at menarche and a hypothesis of menarche. Arch Dis Child. 1971;46(249):695–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Plant TM, Barker-Gibb ML. Neurobiological mechanisms of puberty in higher primates. Hum Reprod Update. 2004;10:67–77.

    Article  CAS  PubMed  Google Scholar 

  11. Gajdos ZK, Butler JL, Henderson KD, He C, Supelak PJ, Egyud M, et al. Association studies of common variants in ten hypogonadotropic hypogonadism genes with age at menarche. J Clin Endocrinol Metab. 2008;93:4290–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Banerjee I, Trueman JA, Hall CM, Price DA, Patel L, Whatmore AJ, et al. Phenotypic variation in constitutional delay of growth and puberty: relationship to specific leptin and leptin receptor gene polymorphisms. Eur J Endocrinol. 2006;155:121–6.

    Article  CAS  PubMed  Google Scholar 

  13. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18(4):298–303.

    Article  CAS  PubMed  Google Scholar 

  14. Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev. 2009; 30(6):713–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Colledge WH. Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab. 2009; 20(3):115–21.

    Article  CAS  PubMed  Google Scholar 

  16. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012;92(3):1235–316.

    Article  CAS  PubMed  Google Scholar 

  17. Donato Jr J, Cravo RM, Frazão R, Gautron L, Scott MM, Lachey J, et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest. 2011;121(1):355–68.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cravo RM, Frazao R, Perello M, Osborne-Lawrence S, Williams KW, Zigman JM, Vianna C, Elias CF. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS One. 2013;8(3):e58698.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100(19):10972–6.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001; 411(6837):613–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23):1731–7.

    Article  CAS  PubMed  Google Scholar 

  23. Gottsch ML, Clifton DK, Steiner RA. From KISS1 to kisspeptins: an historical perspective and suggested nomenclature. Peptides. 2009;30(1):4–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Janneau JL, Maldonado-Estrada J, Tachdjian G, Miran I, Motté N, Saulnier P, et al. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells. J Clin Endocrinol Metab. 2002;87(11):5336–9.

    Article  CAS  PubMed  Google Scholar 

  25. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276(31):28969–75.

    Article  CAS  PubMed  Google Scholar 

  26. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno Jr JS, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27.

    Article  CAS  PubMed  Google Scholar 

  27. Navarro VM, Fernández-Fernández R, Castellano JM, Roa J, Mayen A, Barreiro ML, et al. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol. 2004;561(Pt 2):379–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Plant TM, Ramaswamy S, Dipietro MJ. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology. 2006;147(2):1007–13.

    Article  CAS  PubMed  Google Scholar 

  29. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–56.

    Article  CAS  PubMed  Google Scholar 

  30. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, et al. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008;358(7):709–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML. mRNA expression of tachykinins and tachykinin receptors in different human tissues. Eur J Pharmacol. 2004;494(2–3):233–9.

    Article  CAS  PubMed  Google Scholar 

  32. Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA. Neurokinin B and the hypothalamic regulation of reproduction. Brain Res. 2010;1364:116–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Page NM, Woods RJ, Lowry PJ. A regulatory role for neurokinin B in placental physiology and pre-eclampsia. Regul Pept. 2001;98(3):97–104.

    Article  CAS  PubMed  Google Scholar 

  34. Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martín JD, et al. Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem. 2004;11(15):2045–81.

    Article  CAS  PubMed  Google Scholar 

  35. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet. 2009;41(3):354–8.

    Article  CAS  PubMed  Google Scholar 

  36. Gianetti E, Tusset C, Noel SD, Au MG, Dwyer AA, Hughes VA, et al. TAC3/TACR3 mutations reveal preferential activation of gonadotropin-releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J Clin Endocrinol Metab. 2010;95(6): 2857–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Young J, Bouligand J, Francou B, Raffin-Sanson ML, Gaillez S, Jeanpierre M, et al. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J Clin Endocrinol Metab. 2010;95(5):2287–95.

    Article  CAS  PubMed  Google Scholar 

  38. Guran T, Tolhurst G, Bereket A, Rocha N, Porter K, Turan S, et al. Hypogonadotropic hypogonadism due to a novel missense mutation in the first extracellular loop of the neurokinin B receptor. J Clin Endocrinol Metab. 2009;94(10):3633–9.

    Article  CAS  PubMed  Google Scholar 

  39. Latronico AC. The neurokinin B pathway in human reproduction. Nat Genet. 2009;41(3): 269–70.

    Article  CAS  PubMed  Google Scholar 

  40. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology. 2007;148(12):5752–60.

    Article  CAS  PubMed  Google Scholar 

  41. Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol. 2006;498(5):712–26.

    Article  CAS  PubMed  Google Scholar 

  42. Amstalden M, Coolen LM, Hemmerle AM, Billings HJ, Connors JM, Goodman RL, et al. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J Neuroendocrinol. 2010;22(1):1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, Rodrigues T, Kochi C, Longui CA, Beckers D, de Zegher F, Montenegro LR, Mendonca BB, Carroll RS, Hirschhorn JN, Latronico AC, Kaiser UB. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467–75.

    Article  CAS  PubMed  Google Scholar 

  44. Buettner VL, Walker AM, Singer-Sam J. Novel paternally expressed intergenic transcripts at the mouse Prader-Willi/Angelman syndrome locus. Mamm Genome. 2005;16(4):219–27.

    Article  CAS  PubMed  Google Scholar 

  45. Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999;8(5):783–93.

    Article  CAS  PubMed  Google Scholar 

  46. Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD. The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics. 2000;66(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  47. Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009;29(38):11859–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gill JC, Navarro VM, Kwong C, Noel SD, Martin C, Xu S, Clifton DK, Carroll RS, Steiner RA, Kaiser UB. Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology. 2012;153(10):4883–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB. Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One. 2010;5(7):e11911.

    Article  PubMed Central  PubMed  Google Scholar 

  50. He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet. 2009;41(6):724–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet. 2009;41(6):729–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet. 2009;41(6):648–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH, et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet. 2009;41(6):734–8.

    Article  CAS  PubMed  Google Scholar 

  54. Onland-Moret NC, Peeters PH, van Gils CH, Clavel-Chapelon F, Key T, Tjønneland A, et al. Age at menarche in relation to adult height: the EPIC study. Am J Epidemiol. 2005;162(7): 623–32.

    Article  CAS  PubMed  Google Scholar 

  55. Ong KK, Elks CE, Wills AK, Wong A, Wareham NJ, Loos RJ, et al. Associations between the pubertal timing-related variant in LIN28B and BMI vary across the life course. J Clin Endocrinol Metab. 2011;96(1):E125–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121 Suppl 3:S208–17.

    Article  PubMed  Google Scholar 

  57. Elks CE, Perry JR, Sulem P, Chasman DI, Franceschini N, He C, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 2010;42(12):1077–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Raivio T, Dunkel L. Inhibins in childhood and puberty. Best Pract Res Clin Endocrinol Metab. 2002;16(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  59. Crofton PM, Illingworth PJ, Groome NP, Stirling HF, Swanston I, Gow S, et al. Changes in dimeric inhibin A and B during normal early puberty in boys and girls. Clin Endocrinol (Oxf). 1997;46(1):109–14.

    Article  CAS  Google Scholar 

  60. Sehested A, Juul AA, Andersson AM, Petersen JH, Jensen TK, Müller J, et al. Serum inhibin A and inhibin B in healthy prepubertal, pubertal, and adolescent girls and adult women: relation to age, stage of puberty, menstrual cycle, follicle-stimulating hormone, luteinizing hormone, and estradiol levels. J Clin Endocrinol Metab. 2000;85(4):1634–40.

    CAS  PubMed  Google Scholar 

  61. Burger HG. Evidence for a negative feedback role of inhibin in follicle stimulating hormone regulation in women. Hum Reprod. 1993;8 Suppl 2:129–32.

    Article  CAS  PubMed  Google Scholar 

  62. Sulzbacher S, Schroeder IS, Truong TT, Wobus AM. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Rev. 2009;5(2):159–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanchez, J. (2014). Genetics of Puberty. In: Dietrich, J. (eds) Female Puberty. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0912-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0912-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0911-7

  • Online ISBN: 978-1-4939-0912-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics