Skip to main content

Microbiota, Inflammation and Obesity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

Interactions between metabolism and immunity play a pivotal role in the development of obesity-associated chronic co-morbidities. Obesity involves impairment of immune function affecting both the innate and adaptive immune system. This leads to increased risk of infections as well as chronic low-grade inflammation, which in turn causes metabolic dysfunction (e.g. insulin resistance) and chronic disease (e.g. type-2 diabetes). Gut microbiota has emerged as one of the key factors regulating early events triggering inflammation associated with obesity and metabolic dysfunction. This effect seems to be related to diet- and obesity-associated changes in gut microbiota composition and to increased translocation of immunogenic bacterial products, which activate innate and adaptive immunity in the gut and beyond, contributing to an increase in inflammatory tone. Innate immune receptors, like Toll-like receptors (TLRs), are known to be up-regulated in the tissue affected by most inflammatory disorders and activated by both specific microbial components and dietary lipids. This triggers several signaling transduction pathways (e.g. JNK and IKKβ/NF-κB), leading to inflammatory cytokine and chemokine (TNF-α, IL-1, MCP1) production and to inflammatory cell recruitment, causing insulin resistance. T-cell differentiation into effector inflammatory or regulatory T cells also depends on the type of TLR activated and on cytokine production, which in turn depends upon gut microbiota-diet interactions. Here, we update and discuss our current understanding of how gut microbiota could contribute to defining whole-body metabolism by influencing diverse components of the innate and adaptive immune system, both locally and systemically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMI:

Body mass index

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

ERS:

Endoplasmic reticulum stress

FetA:

Fetuin-A

HFD:

High-fat diet

IKK:

Inhibitory κB kinase

IL:

Interleukin

IL-1Ra:

IL-1 receptor antagonist

iNOS:

Inducible nitric oxide synthase

IR:

Insulin receptor

IRF:

Interferon regulatory transcription factor

IRS:

Insulin receptor substrate

IRS-1:

Insulin receptor substrate 1

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acids

M1:

“Classically activated” macrophages

M2:

“Alternative activated” macrophages

MAPKs:

Mitogen-activated protein kinases

M-cells:

Microfold cells

MCP:

Monocyte chemotactic protein

MDP:

Muramyl dipeptide

Meso-DAP:

d-Glutamyl-meso-diaminopimelic acid

MHC:

Major histocompatibility complex

NF- κB:

Nuclear factor-κB

NKT:

Natural killer T

NLRs:

Nod-like receptor family

NOD:

Nucleotide oligomerization domain

NOS2:

Nitric-oxide synthase 2

PGN:

Peptidoglycan

PI3K:

Phosphatidylinositol 3-kinase

PI3-K:

Phosphatidylinositol 3-kinase

RHM:

Recruited hepatic macrophage

ROS:

Reactive oxygen species

SAA3:

Serum amyloid A3 protein

SFA:

Saturated fatty acid

SOC:

Suppressor of cytokine signaling

STAT3:

Signal transducer and activator of transcription 3

TH1:

T helper 1

TLRs:

Toll-like receptor family

TNF:

Tumor necrosis factor

Tregs:

Regulatory T

ZO:

Zonula occludens

References

  1. Zeyda M, Stulnig TM (2007) Adipose tissue macrophages. Immunol Lett 112(2):61–67

    Article  CAS  PubMed  Google Scholar 

  2. Kanneganti TD, Dixit VD (2012) Immunological complications of obesity. Nat Immunol 13(8):707–712

    Article  CAS  PubMed  Google Scholar 

  3. Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14(3–4):222–231

    Google Scholar 

  4. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson ID, Tuohy KM, McCartney AL, Gibson GR, Nicholson JK (2009) Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J Proteome Res 8(5):2361–2375

    Google Scholar 

  6. Gauffin Cano PG, Santacruz A, Trejo FM, Sanz Y (2013) Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity (Silver Spring). Doi: 10.1002/oby.20330

  7. Sanz Y, Rastmanesh R, Agostoni C (2013) Understanding the role of gut microbes and probiotics in obesity: how far are we? Pharmacol Res 69(1):144–155

    Article  PubMed  Google Scholar 

  8. Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman WA, de Vos WM, Rensen SS (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). Doi: 10.1002/oby.20466

  9. Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B (2002) Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab 282(4):E834–E842

    CAS  PubMed  Google Scholar 

  10. Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104(6):919–929

    Article  CAS  PubMed  Google Scholar 

  11. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214

    Article  PubMed  Google Scholar 

  12. Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarné F, Monsan P, Valet P, Roques C, Amar J, Bouloumié A, Théodorou V, Burcelin R (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61(4):543–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O, Guedon E, Delorme C, Layec S, Khaci G, van de Guchte M, Vandemeulebrouck G, Jamet A, Dervyn R, Sanchez N, Maguin E, Haimet F, Winogradski Y, Cultrone A, Leclerc M, Juste C, Blottière H, Pelletier E, LePaslier D, Artiguenave F, Bruls T, Weissenbach J, Turner K, Parkhill J, Antolin M, Manichanh C, Casellas F, Boruel N, Varela E, Torrejon A, Guarner F, Denariaz G, Derrien M, van Hylckama Vlieg JE, Veiga P, Oozeer R, Knol J, Rescigno M, Brechot C, M’Rini C, Mérieux A, Yamada T (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546

    Google Scholar 

  14. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    Article  CAS  PubMed  Google Scholar 

  15. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288

    Article  CAS  PubMed  Google Scholar 

  17. Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, Rossmann P, Hrnčíř T, Kverka M, Zákostelská Z, Klimešová K, Přibylová J, Bártová J, Sanchez D, Fundová P, Borovská D, Srůtková D, Zídek Z, Schwarzer M, Drastich P, Funda DP (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120

    Article  PubMed  Google Scholar 

  18. Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480 (review)

    Google Scholar 

  19. Sanz Y, De Palma G (2009) Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function. Int Rev Immunol 28(6):397–413

    Article  CAS  PubMed  Google Scholar 

  20. Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B, Grangette C (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008:639803

    Article  PubMed Central  PubMed  Google Scholar 

  21. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Poutahidis T, Kleinewietfeld M, Smillie C, Levkovich T, Perrotta A, Bhela S, Varian BJ, Ibrahim YM, Lakritz JR, Kearney SM, Chatzigiagkos A, Hafler DA, Alm EJ, Erdman SE (2013) Microbial reprogramming inhibits Western diet-associated obesity. PLoS One 8(7):e68596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C, Lund PK (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5(8):e12191

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713

    Google Scholar 

  25. Gerner RR, Wieser V, Moschen AR, Tilg H (2013) Metabolic inflammation: role of cytokines in the crosstalk between adipose tissue and liver. Can J Physiol Pharmacol 91(11):867–872

    Article  CAS  PubMed  Google Scholar 

  26. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480(7375):104–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806

    Article  CAS  PubMed  Google Scholar 

  30. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6(10):772–783

    Article  CAS  PubMed  Google Scholar 

  31. Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374

    Article  CAS  PubMed  Google Scholar 

  32. Wieser V, Moschen AR, Tilg H (2013) Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz) 61(2):119–125

    Article  CAS  Google Scholar 

  33. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch HM, Engleman EG (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17(5):610–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920

    Article  CAS  PubMed  Google Scholar 

  35. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15(8):921–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Winer S, Winer DA (2012) The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance. Immunol Cell Biol 90(8):755–762

    Article  CAS  PubMed  Google Scholar 

  37. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D (2012) PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735 (Epub ahead of print)

    Google Scholar 

  40. Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, Ables EV, Ferrante AW Jr (2010) C–C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59(4):916–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61(2):346–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kotas ME, Lee HY, Gillum MP, Annicelli C, Guigni BA, Shulman GI, Medzhitov R (2011) Impact of CD1d deficiency on metabolism. PLoS One 6(9):e25478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Schipper HS, Rakhshandehroo M, van de Graaf SF, Venken K, Koppen A, Stienstra R, Prop S, Meerding J, Hamers N, Besra G, Boon L, Nieuwenhuis EE, Elewaut D, Prakken B, Kersten S, Boes M, Kalkhoven E (2012) Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest 122(9):3343–3354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mantell BS, Stefanovic-Racic M, Yang X, Dedousis N, Sipula IJ, O’Doherty RM (2011) Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS One 6(6):e19831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, Moschen AR, Muscogiuri G, Sorice GP, Kireva T, Summerer M, Wirtz S, Luther J, Mielenz D, Billmeier U, Egger G, Mayr A, Oberhollenzer F, Kronenberg F, Orthofer M, Penninger JM, Meigs JB, Bonora E, Tilg H, Willeit J, Schett G (2013) Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 19(3):358–363

    Article  CAS  PubMed  Google Scholar 

  46. Gerozissis K (2008) Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 585(1):38–49

    Article  CAS  PubMed  Google Scholar 

  47. Milanski M, Arruda AP, Coope A, Ignacio-Souza LM, Nunez CE, Roman EA, Romanatto T, Pascoal LB, Caricilli AM, Torsoni MA et al (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61:1455–1462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96(9):939–949 (review)

    Google Scholar 

  49. Milner JJ, Beck MA (2012) The impact of obesity on the immune response to infection. Proc Nutr Soc 71(2):298–306

    Article  CAS  PubMed  Google Scholar 

  50. Kim YH, Kim JK, Kim DJ, Nam JH, Shim SM, Choi YK, Lee CH, Poo H (2012) Diet-induced obesity dramatically reduces the efficacy of a 2009 pandemic H1N1 vaccine in a mouse model. J Infect Dis 205(2):244–251

    Article  CAS  PubMed  Google Scholar 

  51. Matarese G, Moschos S, Mantzoros CS (2005) Leptin in immunology. J Immunol 174(6):3137–3142

    Article  CAS  PubMed  Google Scholar 

  52. Zhou Q, Leeman SE, Amar S (2011) Signaling mechanisms in the restoration of impaired immune function due to diet-induced obesity. Proc Natl Acad Sci U S A 108(7):2867–2872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Macia L, Delacre M, Abboud G, Ouk TS, Delanoye A, Verwaerde C, Saule P, Wolowczuk I (2006) Impairment of dendritic cell functionality and steady-state number in obese mice. J Immunol 177(9):5997–6006

    Article  CAS  PubMed  Google Scholar 

  54. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M (2005) Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol 174(11):6820–6828 [Erratum in: J Immunol. 2005 Sep 1; 175(5):3446]

    Google Scholar 

  55. Verwaerde C, Delanoye A, Macia L, Tailleux A, Wolowczuk I (2006) Influence of high-fat feeding on both naive and antigen-experienced T-cell immune response in DO10.11 mice. Scand J Immunol 64(5):457–466

    Article  CAS  PubMed  Google Scholar 

  56. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  57. Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86(5):1286–1292

    CAS  PubMed  Google Scholar 

  58. Lajunen T, Vikatmaa P, Bloigu A, Ikonen T, Lepäntalo M, Pussinen PJ, Saikku P, Leinonen M (2008) Chlamydial LPS and high-sensitivity CRP levels in serum are associated with an elevated body mass index in patients with cardiovascular disease. Innate Immun 14(6):375–382

    Article  CAS  PubMed  Google Scholar 

  59. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9(6):737–743

    Article  CAS  PubMed  Google Scholar 

  60. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Macé K, Chou CJ (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22(7):2416–2426

    Article  CAS  PubMed  Google Scholar 

  62. Reigstad CS, Lundén GO, Felin J, Bäckhed F (2009) Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. PLoS One 4(6):e5842

    Article  PubMed Central  PubMed  Google Scholar 

  63. Caesar R, Reigstad CS, Bäckhed HK, Reinhardt C, Ketonen M, Lundén GÖ, Cani PD, Bäckhed F (2012) Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61(12):1701–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Google Scholar 

  65. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM et al (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998

    Article  CAS  PubMed  Google Scholar 

  66. Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34(4):590–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Sawada K, Ohtake T, Hasebe T, Abe M, Tanaka H, Ikuta K, Suzuki Y, Fujiya M, Hasebe C, Kohgo Y (2013) Augmented hepatic Toll-like receptors by fatty acids trigger the pro-inflammatory state of non-alcoholic fatty liver disease in mice. Hepatol Res. Doi: 10.1111/hepr.12199

  68. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15(5):635–645

    Article  CAS  PubMed  Google Scholar 

  69. Wen H, Ting JP, O’Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases-did Warburg miss inflammation? Nat Immunol 13(4):352–357

    Article  CAS  PubMed  Google Scholar 

  70. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18(8):1279–1285

    Article  CAS  PubMed  Google Scholar 

  71. Delzene N, Neyrik M (2008) Prebiotics and lipid metabolism: review of experimental and human data. In: Gibson GR, Roberfroid M (eds) Handbook of prebiotics. CRC, Boca Raton, pp 201–218

    Google Scholar 

  72. Murphy EF, Cotter PD, Hogan A, O’Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, O’Toole PW, Stanton C, Quigley EM, Daly C, Ross PR, O’Doherty RM, Shanahan F (2013) Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62(2):220–226

    Article  PubMed  Google Scholar 

  73. Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383

    Article  CAS  PubMed  Google Scholar 

  74. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  75. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176(5):3070–3079

    Article  CAS  PubMed  Google Scholar 

  76. Lapthorne S, Macsharry J, Scully P, Nally K, Shanahan F (2012) Differential intestinal M-cell gene expression response to gut commensals. Immunology 136(3):312–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Mazzon E, Cuzzocrea S (2008) Role of TNF-alpha in ileum tight junction alteration in mouse model of restraint stress. Am J Physiol Gastrointest Liver Physiol 294:G1268–G1280

    Article  CAS  PubMed  Google Scholar 

  79. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  CAS  PubMed  Google Scholar 

  80. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55(5):1484–1490

    Article  CAS  PubMed  Google Scholar 

  81. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110(22):9066–9071

    Google Scholar 

  82. Laflamme N, Echchannaoui H, Landmann R, Rivest S (2003) Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 33(4):1127–1138

    Article  CAS  PubMed  Google Scholar 

  83. Ehses JA, Meier DT, Wueest S, Rytka J, Boller S, Wielinga PY, Schraenen A, Lemaire K, Debray S, Van Lommel L, Pospisilik JA, Tschopp O, Schultze SM, Malipiero U, Esterbauer H, Ellingsgaard H, Rütti S, Schuit FC, Lutz TA, Böni-Schnetzler M, Konrad D, Donath MY (2010) Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 53(8):1795–1806

    Article  CAS  PubMed  Google Scholar 

  84. Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, Hirabara SM, Castoldi Â, Vieira P, Camara NO, Curi R, Carvalheira JB, Saad MJ (2011) Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 9(12):e1001212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231

    Article  CAS  PubMed  Google Scholar 

  86. Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, Courtney M, Marre M, Charles MA, Balkau B, Burcelin R (2013) D.E.S.I.R. Study Group. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS One 8(1):e54461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139(1):323–334.e7

    Google Scholar 

  88. Schertzer JD, Klip A (2011) Give a NOD to insulin resistance. Am J Physiol Endocrinol Metab 301(4):E585–E586

    Article  CAS  PubMed  Google Scholar 

  89. Fukazawa A, Alonso C, Kurachi K, Gupta S, Lesser CF, McCormick BA, Reinecker HC (2008) GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog 4(11):e1000228

    Article  PubMed Central  PubMed  Google Scholar 

  90. Netea MG, Kullberg BJ, de Jong DJ, Franke B, Sprong T, Naber TH, Drenth JP, Van der Meer JW (2004) NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn’s disease. Eur J Immunol 34(7):2052–2059

    Article  CAS  PubMed  Google Scholar 

  91. Tamrakar AK, Schertzer JD, Chiu TT, Foley KP, Bilan PJ, Philpott DJ, Klip A (2010) NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance. Endocrinology 151(12):5624–5637

    Article  CAS  PubMed  Google Scholar 

  92. Schertzer JD, Tamrakar AK, Magalhães JG, Pereira S, Bilan PJ, Fullerton MD, Liu Z, Steinberg GR, Giacca A, Philpott DJ, Klip A (2011) NOD1 activators link innate immunity to insulin resistance. Diabetes 60(9):2206–2215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gauffin Cano P, Santacruz A, Moya Á, Sanz Y (2012) Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 7(7):e41079

    Article  PubMed Central  PubMed  Google Scholar 

  95. Davey KJ, Cotter PD, O’Sullivan O, Crispie F, Dinan TG, Cryan JF, O’Mahony SM (2013) Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 3:e309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  PubMed  Google Scholar 

  97. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332(6026):243–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Bassaganya-Riera J, Dominguez-Bello MG, Kronsteiner B, Carbo A, Lu P, Viladomiu M, Pedragosa M, Zhang X, Sobral BW, Mane SP, Mohapatra SK, Horne WT, Guri AJ, Groeschl M, Lopez-Velasco G, Hontecillas R (2012) Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism. PLoS One 7(11):e50069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants AGL2011-25169 and Consolider Fun-C-Food CSD2007-00063 from the Spanish Ministry of Economy and Competitiveness (MINECO, Spain). The scholarship of A Moya from MINECO is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Sanz, Y., Moya-Pérez, A. (2014). Microbiota, Inflammation and Obesity. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_14

Download citation

Publish with us

Policies and ethics