Skip to main content

Multidirectional Chemical Signalling Between Mammalian Hosts, Resident Microbiota, and Invasive Pathogens: Neuroendocrine Hormone-Induced Changes in Bacterial Gene Expression

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

Host-pathogen communication appears to be crucial in establishing the outcome of bacterial infections. There is increasing evidence to suggest that this communication can take place by bacterial pathogens sensing and subsequently responding to host neuroendocrine (NE) stress hormones. Bacterial pathogens have developed mechanisms allowing them to eavesdrop on these communication pathways within their hosts. These pathogens can use intercepted communication signals to adjust their fitness to persist and cause disease in their hosts. Recently, there have been numerous studies highlighting the ability of NE hormones to act as an environmental cue for pathogens, helping to steer their responses during host infection. Host NE hormone sensing can take place indirectly or directly via bacterial adrenergic receptors (BARs). The resulting changes in bacterial gene expression can be of strategic benefit to the pathogen. Furthermore, it is intriguing that not only can bacteria sense NE stress hormones but they are also able to produce key signalling molecules known as autoinducers. The rapid advances in our knowledge of the human microbiome, and its impact on health and disease highlights the potential importance of communication between the microbiota, pathogens and the host. It is indeed likely that the microbiota input significantly in the neuroendocrinological homeostasis of the host by catabolic, anabolic, and signalling processes. The arrival of unwanted guests, such as bacterial pathogens, clearly has a major impact on these delicately balanced interactions. Unravelling the pathways involved in interkingdom communication between invading bacterial pathogens, the resident microbiota, and hosts, may provide novel targets in our continuous search for new antimicrobials to control disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AHLs:

N-acylhomoserine lactones

AI-2:

Autoinducer-2

AI-3:

Autoinducer-3

BAR:

Bacterial adrenergic receptor

DPD:

4,5-Dihydroxy-2,3-pentanedione

GI:

Gastrointestinal

LPS:

Lipopolysaccharide

NE:

Neuroendocrine

QS:

Quorum sensing

References

  1. Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12(2):192–198

    Article  CAS  PubMed  Google Scholar 

  2. Lyte M, Vulchanova L, Brown D (2011) Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343(1):23–32

    Article  CAS  PubMed  Google Scholar 

  3. Freestone PPE, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16(2):55–64

    Article  CAS  PubMed  Google Scholar 

  4. Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81(1–3):87–96

    Article  CAS  PubMed  Google Scholar 

  5. Eisenhofer G, Aneman A, Hooper D, Rundqvist B, Friberg P (1996) Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans. J Neurochem 66(4):1565–1573

    Article  PubMed  Google Scholar 

  6. Aneman A, Eisenhofer G, Olbe L, Dalenbäck J, Nitescu P, Fändriks L et al (1996) Sympathetic discharge to mesenteric organs and the liver. Evidence for substantial mesenteric organ norepinephrine spillover. J Clin Invest 97(7):1640–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS et al (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449(7163):721–725

    Article  CAS  PubMed  Google Scholar 

  8. Flierl MA, Rittirsch D, Nadeau BA, Sarma JV, Day DE, Lentsch AB et al (2009) Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4(2):e4414

    Article  PubMed Central  PubMed  Google Scholar 

  9. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153(12):3923–3938

    Article  CAS  PubMed  Google Scholar 

  10. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100(15):8951–8956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Karavolos MH, Bulmer DM, Spencer H, Rampioni G, Schmalen I, Baker S et al (2011) Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Rep 12(3):252–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Spencer H, Karavolos MH, Bulmer DM, Aldridge P, Chhabra SR, Winzer K et al (2010) Genome-wide transposon mutagenesis identifies a role for host neuroendocrine stress hormones in regulating the expression of virulence genes in Salmonella. J Bacteriol 192(3):714–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Karavolos MH, Spencer H, Bulmer DM, Thompson A, Winzer K, Williams P et al (2008) Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics 9(1):458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M et al (1995) Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92(20):9427–9431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13(2):273–286

    Article  CAS  PubMed  Google Scholar 

  16. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  17. Fuqua C, Greenberg EP (1998) Cell-to-cell communication in Escherichia coli and Salmonella typhimurium: they may be talking, but who’s listening? Proc Natl Acad Sci U S A 95(12):6571–6572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now – gone to lunch! Curr Opin Microbiol 5(2):216–222

    Article  CAS  PubMed  Google Scholar 

  19. Winzer K, Hardie KR, Williams P (2003) LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol 53:291–396

    Google Scholar 

  20. Winzer K, Williams P (2001) Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 291(2):131–143

    Article  CAS  PubMed  Google Scholar 

  21. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci U S A 100:14549–14554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6(2):191–197

    Article  CAS  PubMed  Google Scholar 

  23. Lazazzera BA (2000) Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3(2):177–182

    Article  CAS  PubMed  Google Scholar 

  24. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram- positive bacteria. Peptides 25(9):1389–1403

    Article  CAS  PubMed  Google Scholar 

  25. Dunny GM, Leonard BAB (1997) Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol 51:527–564

    Article  CAS  PubMed  Google Scholar 

  26. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15(12):1468–1480

    Article  CAS  PubMed  Google Scholar 

  27. Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A 96(4):1639–1644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xavier KB, Bassler BL (2005) Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187(1):238–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415(6871):545–549

    Article  CAS  PubMed  Google Scholar 

  30. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL et al (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal Al-2. Mol Cell 15(5):677–687

    Article  CAS  PubMed  Google Scholar 

  31. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  32. Sircili MP, Walters M, Trabulsi LR, Sperandio V (2004) Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect Immun 72(4):2329–2337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3(5):383–396

    Article  CAS  PubMed  Google Scholar 

  34. Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188(16):5668–5681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Rasko DA, Moreira CG, Li DR, Reading NC, Ritchie JM, Waldor MK et al (2008) Targeting QseC signaling and virulence for antibiotic development. Science 321(5892):1078–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Karavolos MH, Williams P, Khan CMA (2011) Interkingdom crosstalk: host neuroendocrine stress hormones drive the hemolytic behavior of Salmonella typhi. Virulence 2(4):371–374

    Article  PubMed Central  PubMed  Google Scholar 

  37. Elenkov IJ, Chrousos GP (2006) Stress system – organization, physiology and immunoregulation. Neuroimmunomodulation 13(5–6):257–267

    Article  CAS  PubMed  Google Scholar 

  38. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103(27):10420–10425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Clarke MB, Sperandio V (2005) Events at the host-microbial interface of the gastrointestinal tract III. Cell-to-cell signaling among microbial flora, host, and pathogens: there is a whole lot of talking going on. Am J Physiol Gastrointest Liver Physiol 288(6):G1105–G1109

    Article  CAS  PubMed  Google Scholar 

  40. Lyte M, Arulanandam BP, Frank CD (1996) Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J Lab Clin Med 128(4):392–398

    Article  CAS  PubMed  Google Scholar 

  41. Vlisidou I, Lyte M, van Diemen PM, Hawes P, Monaghan P, Wallis TS et al (2004) The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect Immun 72(9):5446–5451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kendall MM, Rasko DA, Sperandio V (2007) Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect Immun 75(10):4875–4884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pullinger GD, Carnell SC, Sharaff FF, van Diemen PM, Dziva F, Morgan E et al (2010) Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun 78(1):372–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Burton CL, Chhabra SR, Swift S, Baldwin TJ, Withers H, Hill SJ et al (2002) The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 70(11):5913–5923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Freestone PPE, Haigh RD, Williams PH, Lyte M (2003) Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 222(1):39–43

    Article  CAS  PubMed  Google Scholar 

  46. Brodsky IE, Ghori N, Falkow S, Monack D (2005) Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol Microbiol 55(3):954–972

    Article  CAS  PubMed  Google Scholar 

  47. Detweiler CS, Monack DM, Brodsky IE, Mathew H, Falkow S (2003) virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 48(2):385–400

    Google Scholar 

  48. Freestone PPE, Walton NJ, Haigh RD, Lyte M (2007) Influence of dietary catechols on the growth of enteropathogenic bacteria. Int J Food Microbiol 119(3):159–169

    Article  CAS  PubMed  Google Scholar 

  49. Freestone PPE, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182(21):6091–6098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sandrini SM, Shergill R, Woodward J, Muralikuttan R, Haigh RD, Lyte M et al (2010) Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol 192(2):587–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79(6):2345–2355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Neal CP, Freestone PPE, Maggs AF, Haigh RD, Williams PH, Lyte M (2001) Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiol Lett 194(2):163–169

    Google Scholar 

  53. Lyte M, Erickson AK, Arulanandam BP, Frank CD, Crawford MA, Francis DH (1997) Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 232(3):682–686

    Article  CAS  PubMed  Google Scholar 

  54. Nakano M, Takahashi A, Sakai Y, Nakaya Y (2007) Modulation of pathogenicity with norepinephrine related to the type III secretion system of vibrio parahaemolyticus. J Infect Dis 195(9):1353–1360

    Article  CAS  PubMed  Google Scholar 

  55. Cogan TA, Thomas AO, Rees LEN, Taylor AH, Jepson MA, Williams PH et al (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56(8):1060–1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Scheckelhoff MR, Telford SR, Wesley M, Hu LT (2007) Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A. Proc Natl Acad Sci U S A 104(17):7247–7252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Saito T, Inagaki S, Sakurai K, Okuda K, Ishihara K (2011) Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity. Arch Oral Biol 56(3):244–250

    Article  CAS  PubMed  Google Scholar 

  58. Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95(16):9541–9546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The Human Microbiome Project. Nature 449(7164):804–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lukáš F, Gorenc G, Kopecný J (2008) Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol 53(3):221–224

    Article  Google Scholar 

  62. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295. doi:10.1152/ajpgi.00341.2012

  63. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372(1–6):115–117

    Google Scholar 

  64. Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. Microbial endocrinology. Springer, New York, pp 17–52

    Google Scholar 

  65. Hernández-Romero D, Sanchez-Amat A, Solano F (2006) A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J 273(2):257–270

    Article  PubMed  Google Scholar 

  66. López-serrano D, Sanchez-Amat A, Solano F (2002) Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 15(2):104–111

    Article  PubMed  Google Scholar 

  67. López-Serrano D, Solano F, Sanchez-Amat A (2007) Involvement of a novel copper chaperone in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Microbiology 153(7):2241–2249

    Article  PubMed  Google Scholar 

  68. Solano F, Garcia E, Perez D, Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol 63(9):3499–3506

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Antunes LC, Arena ET, Menendez A, Han J, Ferreira RBR, Buckner MMC et al (2011) Impact of Salmonella infection on host hormone metabolism revealed by metabolomics. Infect Immun 79(4):1759–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hegde M, Wood T, Jayaraman A (2009) The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol 84(4):763–776

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Anjam Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Karavolos, M.H., Khan, C.M.A. (2014). Multidirectional Chemical Signalling Between Mammalian Hosts, Resident Microbiota, and Invasive Pathogens: Neuroendocrine Hormone-Induced Changes in Bacterial Gene Expression. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_11

Download citation

Publish with us

Policies and ethics