Skip to main content

Advances in Radiotracer Development for Molecular Imaging

  • Chapter
  • First Online:
Molecular Imaging of Small Animals
  • 1341 Accesses

Abstract

Molecular imaging is currently defined by the society of nuclear medicine as the visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems [1]. Historically, molecular imaging can be traced back to France in 1896, when Henri Becquerel discovered that certain materials emitted energetic “rays”, a physical process that called radioactive decay later [2]. In 1950s, Michel Ter-Pogossian and his colleagues conducted some pioneering molecular imaging studies in the determination of oxygen content in malignant neoplasms by using 15O-labeled gas mixture. Later, based on 15O-labeled radiopharmaceuticals, Ter-Pogossian et al developed quantitative in vivo tracer techniques and carried out a series of brain imaging studies such as the first quantitative measurements of regional brain oxygen consumption in human etc [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48:18N, 21N.

    Google Scholar 

  2. Domper MG, Gelovani JG (2008) Molecular imaging in oncology. New York: Informa healthcare USA.

    Google Scholar 

  3. Ter-Pogossian MM, WE P (1957) The use of radioactive oxygen 15 in the determination of oxygen content in malignant neoplasms. Radioisotopes in scientific research, Paris, pp.

    Google Scholar 

  4. Raichle ME (1998) Imaging the mind. Semin Nucl Med 28:278–89.

    CAS  PubMed  Google Scholar 

  5. Cassidy PJ, Radda GK (2005) Molecular imaging perspectives. J R Soc Interface 2:133–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. von Schulthess GK, Schlemmer HP (2009) A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 36 Suppl 1:S3–9.

    Google Scholar 

  7. Heiss WD (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36 Suppl 1:S105–12.

    PubMed  Google Scholar 

  8. Schober O, Rahbar K, Riemann B (2009) Multimodality molecular imagin--rom target description to clinical studies. Eur J Nucl Med Mol Imaging 36:302–14.

    Google Scholar 

  9. Rossin R, Welch MJ (2005) Molecular imaging probes for PET and SPECT. In: Schuster DP, Blackwell TS, eds. Molecular imaging of the lungs. New York: Taylor and Francis, pp 3–39.

    Google Scholar 

  10. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–33.

    CAS  PubMed  Google Scholar 

  11. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607.

    CAS  PubMed  Google Scholar 

  12. Dobrucki LW, Sinusas AJ (2005) Cardiovascular molecular imaging. Semin Nucl Med 35:73–81.

    PubMed  Google Scholar 

  13. Dobrucki LW, Sinusas AJ (2005) Molecular cardiovascular imaging. Curr Cardiol Rep 7:130–5.

    PubMed  Google Scholar 

  14. Serganova I, Mayer-Kukuck P, Huang R, Blasberg R (2008) Molecular imaging: reporter gene imaging. Handb Exp Pharmacol:167–223.

    Google Scholar 

  15. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–80.

    CAS  PubMed  Google Scholar 

  16. Brumley CL, Kuhn JA (1995) Radiolabeled monoclonal antibodies. Aorn J 62:343–50, 353–5; quiz 356–8, 361–2.

    Google Scholar 

  17. Blasberg RG (2003) Molecular imaging and cancer. Mol Cancer Ther 2:335–43.

    CAS  PubMed  Google Scholar 

  18. Bonasera TA, O’Neil JP, Xu M, Dobkin JA, Cutler PD, Lich LL, et al. (1996) Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med 37:1009–15.

    CAS  PubMed  Google Scholar 

  19. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, et al. (1994) Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 35:1054–63.

    CAS  PubMed  Google Scholar 

  20. Anderson CJ, Connett JM, Schwarz SW, Rocque PA, Guo LW, Philpott GW, et al. (1992) Copper-64-labeled antibodies for PET imaging. J Nucl Med 33:1685–91.

    CAS  PubMed  Google Scholar 

  21. Phelps ME (2000) Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ponde DE, Dence CS, Schuster DP, Welch MJ (2004) Rapid and reproducible radiosynthesis of [18F] FHBG. Nucl Med Biol 31:133–8.

    CAS  PubMed  Google Scholar 

  23. Serganova I, Blasberg R (2005) Reporter gene imaging: potential impact on therapy. Nucl Med Biol 32:763–80.

    CAS  PubMed  Google Scholar 

  24. Gheysens O, Mottaghy FM (2009) Method of bioluminescence imaging for molecular imaging of physiological and pathological processes. Methods

    Google Scholar 

  25. Sadikot RT, Blackwell TS (2008) Bioluminescence: imaging modality for in vitro and in vivo gene expression. Methods Mol Biol 477:383–94.

    CAS  PubMed  Google Scholar 

  26. Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A, Jr. (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–9.

    CAS  PubMed  Google Scholar 

  27. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, et al. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–5.

    CAS  PubMed  Google Scholar 

  28. Shu CJ, Radu CG, Shelly SM, Vo DD, Prins R, Ribas A, et al. (2009) Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21:155–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Likar Y, Dobrenkov K, Olszewska M, Shenker L, Cai S, Hricak H, et al. (2009) PET imaging of HSV1-tk mutants with acquired specificity toward pyrimidine- and acycloguanosine-based radiotracers. Eur J Nucl Med Mol Imaging.

    Google Scholar 

  30. Zhao B, Schwartz LH, Larson SM (2009) Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers. J Nucl Med 50:239–49.

    PubMed  Google Scholar 

  31. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, et al. (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18:1689–95.

    CAS  PubMed  Google Scholar 

  32. Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, et al. (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–7.

    CAS  PubMed  Google Scholar 

  33. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–7.

    CAS  PubMed  Google Scholar 

  34. Schlyer DJ (2003) Production of radionuclides in accelerators. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 1–71.

    Google Scholar 

  35. Mausner LF, Mirzadeh S (2003) Reactor Production of Radionuclides. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications.Chichester: Wiley, pp 87–119.

    Google Scholar 

  36. Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley.

    Google Scholar 

  37. Schubiger PA, Lehmann L, Friebe M (2007) PET Chemistry The Driving Force in Molecular Imaging. Berlin: Springer.

    Google Scholar 

  38. Saha GB (2004) Basics of PET Imaging Physics, Chemistry, and Regulations. New York: Springer.

    Google Scholar 

  39. Anderson CJ, Welch MJ (1999) Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev 99:2219–34.

    CAS  PubMed  Google Scholar 

  40. Antoni G, Langstrom B (2008) Radiopharmaceuticals: Molecular Imaging using Positron Emission Tomography. In: Semmler W, Schwaiger M, eds. Molecular Imaging I. Berlin: Springer, pp 177–203.

    Google Scholar 

  41. Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, et al. (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 46:1210–8.

    PubMed  Google Scholar 

  42. Hevesy GCd, Peneth F (1938) A manual of radioactivity, 2nd ed. London Oxford University Press.

    Google Scholar 

  43. Eckelman WC (2005) The use of positron emission tomography in drug discovery and development. In: Bailey DL, Townsend DW, Valk PE, et al., eds. Positron emission tomography: basic sciences. London: Springer, pp 327–341.

    Google Scholar 

  44. Banerjee S, Pillai MR, Ramamoorthy N (2001) Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 31:260–77.

    CAS  PubMed  Google Scholar 

  45. Jurisson SS, Lydon JD (1999) Potential technetium small molecule radiopharmaceuticals. Chem Rev 99:2205–18.

    CAS  PubMed  Google Scholar 

  46. Mahmood A, Jones AG (2003) Technetium radiopharmaceuticals. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 323–362.

    Google Scholar 

  47. Liu S, Edwards DS (1999) 99mTc-Labeled Small Peptides as Diagnostic Radiopharmaceuticals. Chem Rev 99:2235–68.

    CAS  PubMed  Google Scholar 

  48. McQuade P, Rowland DJ, Lewis JS, Welch MJ (2005) Positron-emitting isotopes produced on biomedical cyclotrons. Curr Med Chem 12:807–18.

    CAS  PubMed  Google Scholar 

  49. Bigott HM, Welch MJ (2002) Technetium-94 m-sestamibi. Preparation and quality control for human use. . In: Nicolini M, Mazzi U, eds. Technetium, rhenium and other metals in chemistry and nuclear medicine, vol 6. Padova: SG Editoriali, pp 559–561.

    Google Scholar 

  50. Finn R (2003) Chemistry applied to iodine radionuclides. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 423–440.

    Google Scholar 

  51. Weiner RE, Thakur ML (2003) Chemistry of gallium and indium radiopharmaceuticals. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications.Chichester: Wiley, pp 363–400.

    Google Scholar 

  52. Antoni G, Kihlbert T, Langstrom B (2003) Aspects on the synthesis of 11C-labeled compounds. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 141–194.

    Google Scholar 

  53. Clark JC, Aigbirhio FI (2003) Chemistry of nitrogen-13 and oxygen-15. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals:radiochemistry and applications. Chichester: Wiley, pp 119–140.

    Google Scholar 

  54. Snyder SE, Kilbourn MR (2003) Chemistry of fluorine-18 radiopharmaceuticals. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 195–228.

    Google Scholar 

  55. Ferrieri RA (2003) Production and application of synthetic precursors labeled with carbon-11 and fluorine-18. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 229–282.

    Google Scholar 

  56. Fowler JS, Ido T (2003) Design and synthesis of 2-deoxy-2-[18F]fluoro-D-glucose [18FDG]. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications.Chichester: Wiley, pp 307–322.

    Google Scholar 

  57. Rowland DJ, McCarthy TJ, Welch MJ (2003) Radiobromine for imaging and therapy. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications.Chichester: Wiley, pp 441–466.

    Google Scholar 

  58. Ugur O, Kothari PJ, Finn RD, Zanzonico P, Ruan S, Guenther I, et al. (2002) Ga-66 labeled somatostatin analogue DOTA-DPhe1-Tyr3-octreotide as a potential agent for positron emission tomography imaging and receptor mediated internal radiotherapy of somatostatin receptor positive tumors. Nucl Med Biol 29:147–57.

    CAS  PubMed  Google Scholar 

  59. Sun X, Anderson CJ (2004) Production and application of copper-64 radiopharmaceuticals Methods in enzymology. 386:237–261.

    CAS  PubMed  Google Scholar 

  60. Sun G, Hagooly A, Xu J, Nystrom AM, Li Z, Rossin R, et al. (2008) Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules 9:1997–2006.

    CAS  PubMed  Google Scholar 

  61. Rossin R, Muro S, Welch MJ, Muzykantov VR, Schuster DP (2008) In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium. J Nucl Med 49:103–11.

    PubMed  Google Scholar 

  62. Saha GB (2004) Basics of PET Imaging Physics, Chemistry, and Regulations. New York: Springer.

    Google Scholar 

  63. Lewis JS, Singh RK, Welch MJ (2008) Long lived and unconventional PET radionuclides. In: Pomper MG, Jelovani JG, eds. Molecular imaging in oncology. New York: Informa Healthcare, pp 282–292.

    Google Scholar 

  64. Hume SP, Gunn RN, Jones T (1998) Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 25:173–6.

    CAS  PubMed  Google Scholar 

  65. Ding YS, Fowler J (2005) New-generation radiotracers for nAChR and NET. Nucl Med Biol 32:707–18.

    CAS  PubMed  Google Scholar 

  66. Wester HJ (2007) Nuclear imaging probes: from bench to bedside. Clin Cancer Res 13:3470–81.

    CAS  PubMed  Google Scholar 

  67. Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. (1995) Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med 36:1255–62.

    CAS  PubMed  Google Scholar 

  68. Eckelman WC (2003) Mechanism of Target Specific Uptake Using Examples of Muscarinic Receptor Binding Radiotracers. In: Welch MJ, Redvanly CS, eds. Handbook of radiopharmaceuticals: radiochemistry and applications. Chichester: Wiley, pp 487–500.

    Google Scholar 

  69. Velikyan I, Beyer GJ, Bergstrom-Pettermann E, Johansen P, Bergstrom M, Langstrom B (2008) The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. Nucl Med Biol 35:529–36.

    CAS  PubMed  Google Scholar 

  70. McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, et al. (1999) High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol 26:351–8.

    CAS  PubMed  Google Scholar 

  71. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, et al. (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43.

    CAS  PubMed  Google Scholar 

  72. McQuade P, Miao Y, Yoo J, Quinn TP, Welch MJ, Lewis JS (2005) Imaging of melanoma using 64Cu- and 86Y-DOTA-ReCCMSH(Arg11), a cyclized peptide analogue of alpha-MSH. J Med Chem 48:2985–92.

    CAS  PubMed  Google Scholar 

  73. McQuade P, Martin KE, Castle TC, Went MJ, Blower PJ, Welch MJ, et al. (2005) Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents. Nucl Med Biol 32:147–56.

    CAS  PubMed  Google Scholar 

  74. McQuade P, Knight LC, Welch MJ (2004) Evaluation of 64Cu- and 125I-radiolabeled bitistatin as potential agents for targeting alpha v beta 3 integrins in tumor angiogenesis. Bioconjug Chem 15:988–96.

    CAS  PubMed  Google Scholar 

  75. Lewis MR, Reichert DE, Laforest R, Margenau WH, Shefer RE, Klinkowstein RE, et al. (2002) Production and purification of gallium-66 for preparation of tumor-targeting radiopharmaceuticals. Nucl Med Biol 29:701–6.

    CAS  PubMed  Google Scholar 

  76. Zhou D, Sharp TL, Fettig NM, Lee H, Lewis JS, Katzenellenbogen JA, et al. (2008) Evaluation of a bromine-76-labeled progestin 16alpha,17alpha-dioxolane for breast tumor imaging and radiotherapy: in vivo biodistribution and metabolic stability studies. Nucl Med Biol 35:655–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Rossin R, Berndorff D, Friebe M, Dinkelborg LM, Welch MJ (2007) Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin. J Nucl Med 48:1172–9.

    CAS  PubMed  Google Scholar 

  78. Stahlschmidt A, Machulla HJ, Reischl G, Knaus EE, Wiebe LI (2008) Radioiodination of 1-(2-deoxy-beta-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene (dRFIB), a putative thymidine mimic nucleoside for cell proliferation studies. Appl Radiat Isot 66:1221–8.

    CAS  PubMed  Google Scholar 

  79. Zhou D, Chu W, Chen DL, Wang Q, Reichert DE, Rothfuss J, et al. (2009) [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org Biomol Chem 7:1337–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhou D, Lee H, Rothfuss JM, Chen DL, Ponde DE, Welch MJ, et al. (2009) Design and Synthesis of 2-Amino-4-methylpyridine Analogues as Inhibitors for Inducible Nitric Oxide Synthase and in Vivo Evaluation of [(18)F]6-(2-Fluoropropyl)-4-methyl-pyridin-2-amine as a Potential PET Tracer for Inducible Nitric Oxide Synthase. J Med Chem.

    Google Scholar 

  81. Zhou D, Chu W, Rothfuss J, Zeng C, Xu J, Jones L, et al. (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16:5041–6.

    CAS  PubMed  Google Scholar 

  82. Jagoda EM, Vaquero JJ, Seidel J, Green MV, Eckelman WC (2004) Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol 31:771–9.

    CAS  PubMed  Google Scholar 

  83. Tu Z, Chu W, Zhang J, Dence CS, Welch MJ, Mach RH (2005) Synthesis and in vivo evaluation of [11C]PJ34, a potential radiotracer for imaging the role of PARP-1 in necrosis. Nucl Med Biol 32:437–43.

    CAS  PubMed  Google Scholar 

  84. Wang L, Shi J, Kim YS, Zhai S, Jia B, Zhao H, et al. (2009) Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. Mol Pharm 6:231–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108:3134–9.

    CAS  PubMed  Google Scholar 

  86. Mohsin H, Fitzsimmons J, Shelton T, Hoffman TJ, Cutler CS, Lewis MR, et al. (2007) Preparation and biological evaluation of 111In-, 177Lu- and 90Y-labeled DOTA analogues conjugated to B72.3. Nucl Med Biol 34:493–502.

    CAS  PubMed  Google Scholar 

  87. Johnson LL, Schofield L, Donahay T, Bouchard M, Poppas A, Haubner R (2008) Radiolabeled RGD Peptides to Image Angiogenesis in Swine Model of Hibernating Myocardium. JACC Cardiovasc Imaging 1:500–510.

    PubMed Central  PubMed  Google Scholar 

  88. Warburg O (1931) The Metabolism of Tumors. New York: Richard Smith.

    Google Scholar 

  89. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49 Suppl 2:43S–63S.

    CAS  PubMed  Google Scholar 

  90. Jerusalem G, Hustinx R, Beguin Y, Fillet G (2003) PET scan imaging in oncology. Eur J Cancer 39:1525–34.

    CAS  PubMed  Google Scholar 

  91. Belhocine T, Driedger A (2008) 8F-Fluorodeoxyglucose Positron Emission Tomography in Oncology Advantages and Limitations. In: Hayat MA, ed. Cancer Imaging: Instrumentation and Applications, vol 2. Burlington: Elsevier, pp 193–200.

    Google Scholar 

  92. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–22.

    Google Scholar 

  93. Nomori H, Ohba Y, Yoshimoto K, Shibata H, Shiraishi K, Mori T (2009) Positron emission tomography in lung cancer. Gen Thorac Cardiovasc Surg 57:184–91.

    PubMed  Google Scholar 

  94. Allen-Auerbach M, Weber WA (2009) Measuring Response with FDG-PET: Methodological Aspects. Oncologist.

    Google Scholar 

  95. Sun YY, Chen Y (2009) Cancer drug development using glucose metabolism radiopharmaceuticals. Curr Pharm Des 15:983–7.

    CAS  PubMed  Google Scholar 

  96. Chen Y, Xiong Q, Yang X, Huang Z, Zhao Y, He L (2007) Noninvasive scintigraphic detection of tumor with 99mTc-DTPA-deoxyglucose: an experimental study. Cancer Biother Radiopharm 22:403–5.

    CAS  PubMed  Google Scholar 

  97. Chen Y, Huang ZW, He L, Zheng SL, Li JL, Qin DL (2006) Synthesis and evaluation of a technetium-99m-labeled diethylenetriaminepentaacetate-deoxyglucose complex ([99mTc]-DTPA-DG) as a potential imaging modality for tumors. Appl Radiat Isot 64:342–7.

    CAS  PubMed  Google Scholar 

  98. Yang DJ, Kim CG, Schechter NR, Azhdarinia A, Yu DF, Oh CS, et al. (2003) Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology 226:465–73.

    PubMed  Google Scholar 

  99. Yang DJ, Kim EE (2005) Tracer development and hybrid imaging. Eur J Nucl Med Mol Imaging 32:1001–2.

    PubMed  Google Scholar 

  100. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–45.

    CAS  PubMed  Google Scholar 

  101. Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–19.

    PubMed  Google Scholar 

  102. Keyaerts M, Lahoutte T, Neyns B, Caveliers V, Vanhove C, Everaert H, et al. (2007) 123I-2-iodo-tyrosine, a new tumour imaging agent: human biodistribution, dosimetry and initial clinical evaluation in glioma patients. Eur J Nucl Med Mol Imaging 34:994–1002.

    CAS  PubMed  Google Scholar 

  103. Hellwig D, Romeike BF, Ketter R, Moringlane JR, Kirsch CM, Samnick S (2008) Intra-individual comparison of p-[123I]-iodo-L-phenylalanine and L-3-[123I]-iodo-alpha-methyl-tyrosine for SPECT imaging of gliomas. Eur J Nucl Med Mol Imaging 35:24–31.

    CAS  PubMed  Google Scholar 

  104. Biersack HJ, Coenen HH, Stocklin G, Reichmann K, Bockisch A, Oehr P, et al. (1989) Imaging of brain tumors with L-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nucl Med 30:110–2.

    CAS  PubMed  Google Scholar 

  105. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–5.

    CAS  PubMed  Google Scholar 

  106. Hara T, Kosaka N, Kishi H (2002) Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–99.

    CAS  PubMed  Google Scholar 

  107. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. (2001) Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42:1805–14.

    CAS  PubMed  Google Scholar 

  108. Bansal A, Shuyan W, Hara T, Harris RA, Degrado TR (2008) Biodisposition and metabolism of [(18)F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats. Eur J Nucl Med Mol Imaging 35:1192–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29:1380–4.

    CAS  PubMed  Google Scholar 

  110. Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N, et al. (2002) Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29:1492–5.

    CAS  PubMed  Google Scholar 

  111. Vavere AL, Kridel SJ, Wheeler FB, Lewis JS (2008) 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49:327–34.

    CAS  PubMed  Google Scholar 

  112. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49 Suppl 2:64S–80S.

    CAS  PubMed  Google Scholar 

  113. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–82.

    CAS  PubMed  Google Scholar 

  114. Watanabe K, Nomori H, Ohtsuka T, Naruke T, Ebihara A, Orikasa H, et al. (2006) [F-18]Fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol 36:403–9.

    PubMed  Google Scholar 

  115. de Wolde H, Pruim J, Mastik MF, Koudstaal J, Molenaar WM (1997) Proliferative activity in human brain tumors: comparison of histopathology and L-[1-(11)C]tyrosine PET. J Nucl Med 38:1369–74.

    PubMed  Google Scholar 

  116. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–6.

    CAS  PubMed  Google Scholar 

  117. van Waarde A, Been LB, Ishiwata K, Dierckx RA, Elsinga PH (2006) Early response of sigma-receptor ligands and metabolic PET tracers to 3 forms of chemotherapy: an in vitro study in glioma cells. J Nucl Med 47:1538–45.

    PubMed  Google Scholar 

  118. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–31.

    CAS  PubMed  Google Scholar 

  119. Vander Borght T, Lambotte L, Pauwels S, Labar D, Beckers C, Dive C (1991) Noninvasive measurement of liver regeneration with positron emission tomography and [2-11C]thymidine. Gastroenterology 101:794–9.

    CAS  PubMed  Google Scholar 

  120. Vander Borght T, Labar D, Pauwels S, Lambotte L (1991) Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Int J Rad Appl Instrum [A] 42:103–4.

    CAS  Google Scholar 

  121. Goethals P, van Eijkeren M, Lemahieu I (1999) In vivo distribution and identification of 11C-activity after injection of [methyl-11C]thymidine in Wistar rats. J Nucl Med 40:491–6.

    CAS  PubMed  Google Scholar 

  122. Toyohara J, Gogami A, Hayashi A, Yonekura Y, Fujibayashi Y (2003) Pharmacokinetics and metabolism of 5-125I-iodo-4'-thio-2'-deoxyuridine in rodents. J Nucl Med 44:1671–6.

    CAS  PubMed  Google Scholar 

  123. Cho SY, Ravasi L, Szajek LP, Seidel J, Green MV, Fine HA, et al. (2005) Evaluation of (76)Br-FBAU as a PET reporter probe for HSV1-tk gene expression imaging using mouse models of human glioma. J Nucl Med 46:1923–30.

    CAS  PubMed  Google Scholar 

  124. Wells P, Price P (2008) Tumor proliferation:2-[11C]-thymidine positron emission tomography. In: Hayat MA, ed. Cancer Imaging: instrumentation and applications, vol 2. Burlington: Elsevier, pp 181–191.

    Google Scholar 

  125. Kameyama R, Yamamoto Y, Izuishi K, Takebayashi R, Hagiike M, Murota M, et al. (2009) Detection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 36:382–8.

    PubMed  Google Scholar 

  126. Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S, et al. (2007) Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:1610–6.

    CAS  PubMed  Google Scholar 

  127. Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32:663–71.

    CAS  PubMed  Google Scholar 

  128. Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA (2005) Kinetic modeling of 3'-deoxy-3'-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 46:371–80.

    CAS  PubMed  Google Scholar 

  129. Dittmann H, Jusufoska A, Dohmen BM, Smyczek-Gargya B, Fersis N, Pritzkow M, et al. (2009) 3'-Deoxy-3'-[(18)F]fluorothymidine (FLT) uptake in breast cancer cells as a measure of proliferation after doxorubicin and docetaxel treatment. Nucl Med Biol 36:163–9.

    CAS  PubMed  Google Scholar 

  130. Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, et al. (2006) Use of 3'-deoxy-3'-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 33:412–9.

    CAS  PubMed  Google Scholar 

  131. Sun H, Mangner TJ, Collins JM, Muzik O, Douglas K, Shields AF (2005) Imaging DNA synthesis in vivo with 18F-FMAU and PET. J Nucl Med 46:292–6.

    CAS  PubMed  Google Scholar 

  132. Bading JR, Shahinian AH, Vail A, Bathija P, Koszalka GW, Koda RT, et al. (2004) Pharmacokinetics of the thymidine analog 2'-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (FMAU) in tumor-bearing rats. Nucl Med Biol 31:407–18.

    CAS  PubMed  Google Scholar 

  133. Mangner TJ, Klecker RW, Anderson L, Shields AF (2003) Synthesis of 2'-deoxy-2'-[18F]fluoro-beta-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU and [18F]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [18F]labelled FAU, FMAU, FBAU, FIAU. Nucl Med Biol 30:215–24.

    CAS  PubMed  Google Scholar 

  134. Sun H, Sloan A, Mangner TJ, Vaishampayan U, Muzik O, Collins JM, et al. (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32:15–22.

    CAS  PubMed  Google Scholar 

  135. van Waarde A, Elsinga PH (2008) Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des 14:3326–339.

    PubMed  Google Scholar 

  136. Denny WA (2001) Prodrug strategies in cancer therapy. Eur J Med Chem 36:577–95.

    CAS  PubMed  Google Scholar 

  137. Brown JM (1999) The hypoxic cell: a target for selective cancer therap--ighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–70.

    Google Scholar 

  138. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–72.

    PubMed Central  PubMed  Google Scholar 

  139. Padhani AR (2005) Where are we with imaging oxygenation in human tumours? Cancer Imaging 5:128–30.

    PubMed Central  PubMed  Google Scholar 

  140. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, et al. (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–13.

    PubMed  Google Scholar 

  141. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–8.

    PubMed  Google Scholar 

  142. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, et al. (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–50.

    CAS  PubMed  Google Scholar 

  143. Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 49:201–5.

    CAS  PubMed  Google Scholar 

  144. Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging 53:193–200.

    CAS  PubMed  Google Scholar 

  145. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49 Suppl 2:129S–48S.

    CAS  PubMed  Google Scholar 

  146. Rajendran JG, Krohn KA (2005) Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 43:169–87.

    PubMed  Google Scholar 

  147. Padhani A (2006) PET imaging of tumour hypoxia. Cancer Imaging 6:S117–21.

    PubMed Central  PubMed  Google Scholar 

  148. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, et al. (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795–800.

    CAS  PubMed  Google Scholar 

  149. Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, et al. (2003) [18F]Fluoro azomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30:317–26.

    CAS  PubMed  Google Scholar 

  150. Barthel H, Wilson H, Collingridge DR, Brown G, Osman S, Luthra SK, et al. (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 90:2232–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Komar G, Seppanen M, Eskola O, Lindholm P, Gronroos TJ, Forsback S, et al. (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–51.

    PubMed  Google Scholar 

  152. Ziemer LS, Evans SM, Kachur AV, Shuman AL, Cardi CA, Jenkins WT, et al. (2003) Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur J Nucl Med Mol Imaging 30:259–66.

    CAS  PubMed  Google Scholar 

  153. Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KS, et al. (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757.

    CAS  PubMed  Google Scholar 

  154. Chu T, Li R, Hu S, Liu X, Wang X (2004) Preparation and biodistribution of technetium-99m-labeled 1-(2-nitroimidazole-1-yl)-propanhydroxyiminoamide (N2IPA) as a tumor hypoxia marker. Nucl Med Biol 31:199–203.

    CAS  PubMed  Google Scholar 

  155. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA (2008) An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med 49:1177–82.

    PubMed  Google Scholar 

  156. Wood KA, Wong WL, Saunders MI (2008) [(64)Cu]diacetyl-bis(N(4)-methyl-thio semicarbazone) - a radiotracer for tumor hypoxia. Nucl Med Biol 35:393–400.

    CAS  PubMed  Google Scholar 

  157. Dietz DW, Dehdashti F, Grigsby PW, Malyapa RS, Myerson RJ, Picus J, et al. (2008) Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing Neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis Colon Rectum 51:1641–8.

    PubMed  Google Scholar 

  158. Bayly SR, King RC, Honess DJ, Barnard PJ, Betts HM, Holland JP, et al. (2008) In vitro and in vivo evaluations of a hydrophilic 64Cu-bis(thiosemicarbazonato)-glucose conjugate for hypoxia imaging. J Nucl Med 49:1862–8.

    CAS  PubMed  Google Scholar 

  159. Krohn KA, Link JM (2003) Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple. Nucl Med Biol 30:819–26.

    CAS  PubMed  Google Scholar 

  160. Krohn KA (2001) The physical chemistry of ligand-receptor binding identifies some limitations to the analysis of receptor images. Nucl Med Biol 28:477–83.

    CAS  PubMed  Google Scholar 

  161. Mankoff DA, Link JM, Linden HM, Sundararajan L, Krohn KA (2008) Tumor receptor imaging. J Nucl Med 49 Suppl 2:149S–63S.

    CAS  PubMed  Google Scholar 

  162. Hagooly A, Rossin R, Welch MJ (2008) Small molecule receptors as imaging targets. Handb Exp Pharmacol:93–129.

    Google Scholar 

  163. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–47.

    PubMed  Google Scholar 

  164. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–8.

    CAS  PubMed  Google Scholar 

  165. Vallabhajosula S, Moyer BR, Lister-James J, McBride BJ, Lipszyc H, Lee H, et al. (1996) Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides. J Nucl Med 37:1016–22.

    CAS  PubMed  Google Scholar 

  166. Gandomkar M, Najafi R, Shafiei M, Mazidi M, Ebrahimi SE (2007) Preclinical evaluation of [99mTc/EDDA/tricine/HYNIC0, 1-Nal3, Thr8]-octreotide as a new analogue in the detection of somatostatin-receptor-positive tumors. Nucl Med Biol 34:651–7.

    CAS  PubMed  Google Scholar 

  167. Ginj M, Zhang H, Eisenwiener KP, Wild D, Schulz S, Rink H, et al. (2008) New pansomatostatin ligands and their chelated versions: affinity profile, agonist activity, internalization, and tumor targeting. Clin Cancer Res 14:2019–27.

    CAS  PubMed  Google Scholar 

  168. Wadas TJ, Eiblmaier M, Zheleznyak A, Sherman CD, Ferdani R, Liang K, et al. (2008) Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors. J Nucl Med 49:1819–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Win Z, Al-Nahhas A, Rubello D, Gross MD (2007) Somatostatin receptor PET imaging with Gallium-68 labeled peptides. Q J Nucl Med Mol Imaging 51:244–50.

    CAS  PubMed  Google Scholar 

  170. Maecke HR, Hofmann M, Haberkorn U (2005) (68)Ga-labeled peptides in tumor imaging. J Nucl Med 46 Suppl 1:172S–8S.

    Google Scholar 

  171. Friedman M, Stahl S (2009) Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem 53:1–29.

    CAS  PubMed  Google Scholar 

  172. Wu JC, Bengel FM, Gambhir SS (2007) Cardiovascular molecular imaging. Radiology 244:337–55.

    PubMed  Google Scholar 

  173. Brown TM, Bittner V (2008) Biomarkers of atherosclerosis: clinical applications. Curr Cardiol Rep 10:497–504.

    PubMed Central  PubMed  Google Scholar 

  174. Langer HF, Haubner R, Pichler BJ, Gawaz M (2008) Radionuclide imaging: a molecular key to the atherosclerotic plaque. J Am Coll Cardiol 52:1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. (2005) Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46:763–9.

    CAS  PubMed  Google Scholar 

  176. Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49:453–61.

    CAS  PubMed  Google Scholar 

  177. Liu Z, Niu G, Wang F, Chen X (2009) (68)Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging.

    Google Scholar 

  178. Laverman P, Roosenburg S, Gotthardt M, Park J, Oyen WJ, de Jong M, et al. (2008) Targeting of a CCK(2) receptor splice variant with (111)In-labelled cholecystokinin-8 (CCK8) and (111)In-labelled minigastrin. Eur J Nucl Med Mol Imaging 35:386–92.

    CAS  PubMed  Google Scholar 

  179. von Guggenberg E, Dietrich H, Skvortsova I, Gabriel M, Virgolini IJ, Decristoforo C (2007) 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1209–18.

    Google Scholar 

  180. Wild D, Macke H, Christ E, Gloor B, Reubi JC (2008) Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med 359:766–8.

    CAS  PubMed  Google Scholar 

  181. Gotthardt M, Fischer M, Naeher I, Holz JB, Jungclas H, Fritsch HW, et al. (2002) Use of the incretin hormone glucagon-like peptide-1 (GLP-1) for the detection of insulinomas: initial experimental results. Eur J Nucl Med Mol Imaging 29:597–606.

    CAS  PubMed  Google Scholar 

  182. Zwanziger D, Khan IU, Neundorf I, Sieger S, Lehmann L, Friebe M, et al. (2008) Novel chemically modified analogues of neuropeptide Y for tumor targeting. Bioconjug Chem 19:1430–8.

    CAS  PubMed  Google Scholar 

  183. Garcia-Garayoa E, Blauenstein P, Blanc A, Maes V, Tourwe D, Schubiger PA (2009) A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging 36:37–47.

    CAS  PubMed  Google Scholar 

  184. Maina T, Nikolopoulou A, Stathopoulou E, Galanis AS, Cordopatis P, Nock BA (2007) [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging 34:1804–14.

    CAS  PubMed  Google Scholar 

  185. Van der Mey M, Janssen CG, Janssens FE, Jurzak M, Langlois X, Sommen FM, et al. (2005) Synthesis and biodistribution of [(11)C]R116301, a promising PET ligand for central NK(1) receptors. Bioorg Med Chem 13:1579–86.

    PubMed  Google Scholar 

  186. Haneda E, Higuchi M, Maeda J, Inaji M, Okauchi T, Ando K, et al. (2007) In vivo mapping of substance P receptors in brains of laboratory animals by high-resolution imaging systems. Synapse 61:205–15.

    PubMed  Google Scholar 

  187. Zhang K, Aruva MR, Shanthly N, Cardi CA, Rattan S, Patel C, et al. (2008) PET imaging of VPAC1 expression in experimental and spontaneous prostate cancer. J Nucl Med 49:112–21.

    CAS  PubMed  Google Scholar 

  188. Cheng D, Yin D, Zhang L, Wang M, Li G, Wang Y (2007) Radiosynthesis of 18F-(R8,15,21, L17)-vasoactive intestinal peptide and preliminary evaluation in mice bearing C26 colorectal tumours. Nucl Med Commun 28:501–6.

    CAS  PubMed  Google Scholar 

  189. Thakur ML, Aruva MR, Gariepy J, Acton P, Rattan S, Prasad S, et al. (2004) PET imaging of oncogene overexpression using 64Cu-vasoactive intestinal peptide (VIP) analog: comparison with 99mTc-VIP analog. J Nucl Med 45:1381–9.

    CAS  PubMed  Google Scholar 

  190. Miao Y, Benwell K, Quinn TP (2007) 99mTc- and 111In-labeled alpha-melanocyte-stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. J Nucl Med 48:73–80.

    CAS  PubMed  Google Scholar 

  191. Wei L, Butcher C, Miao Y, Gallazzi F, Quinn TP, Welch MJ, et al. (2007) Synthesis and biologic evaluation of 64Cu-labeled rhenium-cyclized alpha-MSH peptide analog using a cross-bridged cyclam chelator. J Nucl Med 48:64–72.

    CAS  PubMed  Google Scholar 

  192. Wei L, Miao Y, Gallazzi F, Quinn TP, Welch MJ, Vavere AL, et al. (2007) Gallium-68-labeled DOTA-rhenium-cyclized alpha-melanocyte-stimulating hormone analog for imaging of malignant melanoma. Nucl Med Biol 34:945–53.

    PubMed Central  PubMed  Google Scholar 

  193. Henriksen G, Schottelius M, Poethko T, Hauser A, Wolf I, Schwaiger M, et al. (2004) Proof of principle for the use of 11C-labelled peptides in tumour diagnosis with PET. Eur J Nucl Med Mol Imaging 31:1653–7.

    CAS  PubMed  Google Scholar 

  194. Schottelius M, Poethko T, Herz M, Reubi JC, Kessler H, Schwaiger M, et al. (2004) First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin Cancer Res 10:3593–606.

    CAS  PubMed  Google Scholar 

  195. Chu W, Xu J, Zhou D, Zhang F, Jones LA, Wheeler KT, et al. (2009) New N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl phenylcarbamate analogs as sigma2 receptor ligands: synthesis, in vitro characterization, and evaluation as PET imaging and chemosensitization agents. Bioorg Med Chem 17:1222–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Rowland DJ, Tu Z, Xu J, Ponde D, Mach RH, Welch MJ (2006) Synthesis and in vivo evaluation of 2 high-affinity 76Br-labeled sigma2-receptor ligands. J Nucl Med 47:1041–8.

    CAS  PubMed  Google Scholar 

  197. Kawamura K, Tsukada H, Shiba K, Tsuji C, Harada N, Kimura Y, et al. (2007) Synthesis and evaluation of fluorine-18-labeled SA4503 as a selective sigma1 receptor ligand for positron emission tomography. Nucl Med Biol 34:571–7.

    CAS  PubMed  Google Scholar 

  198. Staelens L, Oltenfreiter R, Dumont F, Waterhouse RN, Vandenbulcke K, Blanckaert P, et al. (2005) In vivo evaluation of [123I]-4-iodo-N-(4-(4-(2-methoxyphenyl)-piperazin-1-yl)butyl)-benzamide: a potential sigma receptor ligand for SPECT studies. Nucl Med Biol 32:193–200.

    CAS  PubMed  Google Scholar 

  199. Ross TL, Honer M, Lam PY, Mindt TL, Groehn V, Schibli R, et al. (2008) Fluorine-18 click radiosynthesis and preclinical evaluation of a new 18F-labeled folic acid derivative. Bioconjug Chem 19:2462–70.

    CAS  PubMed  Google Scholar 

  200. Fisher RE, Siegel BA, Edell SL, Oyesiku NM, Morgenstern DE, Messmann RA, et al. (2008) Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J Nucl Med 49:899–906.

    PubMed  Google Scholar 

  201. Bigott HM, Parent E, Luyt LG, Katzenellenbogen JA, Welch MJ (2005) Design and synthesis of functionalized cyclopentadienyl tricarbonylmetal complexes for technetium-94 m PET imaging of estrogen receptors. Bioconjug Chem 16:255–64.

    CAS  PubMed  Google Scholar 

  202. Takahashi N, Yang DJ, Kohanim S, Oh CS, Yu DF, Azhdarinia A, et al. (2007) Targeted functional imaging of estrogen receptors with 99mTc-GAP-EDL. Eur J Nucl Med Mol Imaging 34:354–62.

    CAS  PubMed  Google Scholar 

  203. Parent EE, Dence CS, Sharp TL, Welch MJ, Katzenellenbogen JA (2008) 7alpha-18F-fluoromethyl-dihydrotestosterone and 7alpha-18F-fluoromethyl-nortestosterone: ligands to determine the role of sex hormone-binding globulin for steroidal radiopharmaceuticals. J Nucl Med 49:987–94.

    CAS  PubMed  Google Scholar 

  204. Garg S, Doke A, Black KW, Garg PK (2008) In vivo biodistribution of an androgen receptor avid PET imaging agent 7-alpha-fluoro-17 alpha-methyl-5-alpha-dihydrotestosterone ([(18)F]FMDHT) in rats pretreated with cetrorelix, a GnRH antagonist. Eur J Nucl Med Mol Imaging 35:379–85.

    CAS  PubMed  Google Scholar 

  205. McLarty K, Cornelissen B, Scollard DA, Done SJ, Chun K, Reilly RM (2009) Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur J Nucl Med Mol Imaging 36:81–93.

    CAS  PubMed  Google Scholar 

  206. Ahlgren S, Wallberg H, Tran TA, Widstrom C, Hjertman M, Abrahmsen L, et al. (2009) Targeting of HER2-Expressing Tumors with a Site-Specifically 99mTc-Labeled Recombinant Affibody Molecule, ZHER2:2395, with C-Terminally Engineered Cysteine. J Nucl Med.

    Google Scholar 

  207. Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J (2008) [18F]FBEM-Z(HER2:342)-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Cheng Z, De Jesus OP, Namavari M, De A, Levi J, Webster JM, et al. (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–13.

    CAS  PubMed  Google Scholar 

  209. Orlova A, Wallberg H, Stone-Elander S, Tolmachev V (2009) On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 50:417–25.

    CAS  PubMed  Google Scholar 

  210. Chen W, Bural GG, Torigian DA, Rader DJ, Alavi A (2009) Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 36:144–51.

    PubMed  Google Scholar 

  211. Zhang Z, Machac J, Helft G, Worthley SG, Tang C, Zaman AG, et al. (2006) Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med 6:3.

    PubMed Central  PubMed  Google Scholar 

  212. Worthley SG, Zhang ZY, Machac J, Helft G, Tang C, Liew GY, et al. (2009) In vivo non-invasive serial monitoring of FDG-PET progression and regression in a rabbit model of atherosclerosis. Int J Cardiovasc Imaging 25:251–7.

    PubMed  Google Scholar 

  213. Wyss MT, Weber B, Honer M, Spath N, Ametamey SM, Westera G, et al. (2004) 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 31:312–6.

    CAS  PubMed  Google Scholar 

  214. Matter CM, Wyss MT, Meier P, Spath N, von Lukowicz T, Lohmann C, et al. (2006) 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 26:584–9.

    CAS  PubMed  Google Scholar 

  215. Riou LM, Broisat A, Dimastromatteo J, Pons G, Fagret D, Ghezzi C (2009) Pre-clinical and clinical evaluation of nuclear tracers for the molecular imaging of vulnerable atherosclerosis: an overview. Curr Med Chem 16:1499–511.

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Ishino S, Kuge Y, Takai N, Tamaki N, Strauss HW, Blankenberg FG, et al. (2007) 99mTc-Annexin A5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits. Eur J Nucl Med Mol Imaging 34:889–99.

    PubMed  Google Scholar 

  217. Zhao Y, Kuge Y, Zhao S, Morita K, Inubushi M, Strauss HW, et al. (2007) Comparison of 99mTc-annexin A5 with 18F-FDG for the detection of atherosclerosis in ApoE−/− mice. Eur J Nucl Med Mol Imaging 34:1747–55.

    CAS  PubMed  Google Scholar 

  218. Kircher MF, Grimm J, Swirski FK, Libby P, Gerszten RE, Allport JR, et al. (2008) Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 117:388–95.

    PubMed Central  PubMed  Google Scholar 

  219. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Broisat A, Riou LM, Ardisson V, Boturyn D, Dumy P, Fagret D, et al. (2007) Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p. Eur J Nucl Med Mol Imaging 34:830–40.

    CAS  PubMed  Google Scholar 

  221. Dobrucki LW, Sinusas AJ (2007) Imaging angiogenesis. Curr Opin Biotechnol 18:90–6.

    CAS  PubMed  Google Scholar 

  222. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–27.

    CAS  PubMed  Google Scholar 

  223. Choe YS, Lee KH (2007) Targeted in vivo imaging of angiogenesis: present status and perspectives. Curr Pharm Des 13:17–31.

    CAS  PubMed  Google Scholar 

  224. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49 Suppl 2:113S–28S.

    CAS  PubMed  Google Scholar 

  225. Cai W, Gambhir SS, Chen X (2008) Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 445:141–76.

    CAS  PubMed  Google Scholar 

  226. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–56.

    CAS  PubMed  Google Scholar 

  227. Willmann JK, Chen K, Wang H, Paulmurugan R, Rollins M, Cai W, et al. (2008) Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 117:915–22.

    CAS  PubMed  Google Scholar 

  228. Wang H, Cai W, Chen K, Li ZB, Kashefi A, He L, et al. (2007) A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 34:2001–10.

    CAS  PubMed  Google Scholar 

  229. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, et al. (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–9.

    CAS  PubMed  Google Scholar 

  230. Haubner R (2008) Noninvasive rracer techniques to characterize angiogenesis. In: Semmler W, Schwaiger M, eds. Molecular Imaging II. Heidelberg: Springer, pp 323–341.

    Google Scholar 

  231. Haubner RH, Wester HJ, Weber WA, Schwaiger M (2003) Radiotracer-based strategies to image angiogenesis. Q J Nucl Med 47:189–99.

    CAS  PubMed  Google Scholar 

  232. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, et al. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17:768–74.

    CAS  PubMed  Google Scholar 

  233. Medina OP, Kairemo K, Valtanen H, Kangasniemi A, Kaukinen S, Ahonen I, et al. (2005) Radionuclide imaging of tumor xenografts in mice using a gelatinase-targeting peptide. Anticancer Res 25:33–42.

    CAS  PubMed  Google Scholar 

  234. Sprague JE, Li WP, Liang K, Achilefu S, Anderson CJ (2006) In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models. Nucl Med Biol 33:227–37.

    CAS  PubMed  Google Scholar 

  235. Kuhnast B, Bodenstein C, Haubner R, Wester HJ, Senekowitsch-Schmidtke R, Schwaiger M, et al. (2004) Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide. Nucl Med Biol 31:337–44.

    CAS  PubMed  Google Scholar 

  236. Hanaoka H, Mukai T, Habashita S, Asano D, Ogawa K, Kuroda Y, et al. (2007) Chemical design of a radiolabeled gelatinase inhibitor peptide for the imaging of gelatinase activity in tumors. Nucl Med Biol 34:503–10.

    CAS  PubMed  Google Scholar 

  237. Zheng QH, Fei X, Liu X, Wang JQ, Stone KL, Martinez TD, et al. (2004) Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S)-2-(4'-[11C]methoxybiphenyl-4-sulfonylamino)-3-methylbutyric acid and N-hydroxy-(R)-2-[[(4'-[11C]methoxyphenyl)sulfonyl]benzylamino]-3-methylbutanamide. Nucl Med Biol 31:77–85.

    CAS  PubMed  Google Scholar 

  238. Breyholz HJ, Wagner S, Levkau B, Schober O, Schafers M, Kopka K (2007) A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo. Q J Nucl Med Mol Imaging 51:24–32.

    CAS  PubMed  Google Scholar 

  239. Beer AJ, Schwaiger M (2008) Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 27:631–44.

    CAS  PubMed  Google Scholar 

  240. Dijkgraaf I, Beer AJ, Wester HJ (2009) Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci 14:887–99.

    CAS  Google Scholar 

  241. Haubner R, Decristoforo C (2009) Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci 14:872–86.

    CAS  Google Scholar 

  242. Haubner R (2006) Alphavbeta3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 33 Suppl 1:54–63.

    PubMed  Google Scholar 

  243. Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H (1991) Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291:50–4.

    CAS  PubMed  Google Scholar 

  244. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. (1999) Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–71.

    CAS  PubMed  Google Scholar 

  245. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. (2001) Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–5.

    CAS  PubMed  Google Scholar 

  246. Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. (2005) Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111:3255–60.

    CAS  PubMed  Google Scholar 

  247. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin alpha v beta 3. Cancer Res 66:9673–81.

    CAS  PubMed  Google Scholar 

  248. Wei L, Ye Y, Wadas TJ, Lewis JS, Welch MJ, Achilefu S, et al. (2009) (64)Cu-Labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nucl Med Biol 36:277–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Goel A, Baranowska-Kortylewicz J, Hinrichs SH, Wisecarver J, Pavlinkova G, Augustine S, et al. (2001) 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: novel imaging agents for rapid in vivo localization of human colon carcinoma. J Nucl Med 42:1519–27.

    CAS  PubMed  Google Scholar 

  250. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004) Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104.

    CAS  PubMed  Google Scholar 

  251. Sancey L, Ardisson V, Riou LM, Ahmadi M, Marti-Batlle D, Boturyn D, et al. (2007) In vivo imaging of tumour angiogenesis in mice with the alpha(v)beta (3) integrin-targeted tracer 99mTc-RAFT-RGD. Eur J Nucl Med Mol Imaging 34:2037–47.

    CAS  PubMed  Google Scholar 

  252. Cormode DP, Skajaa T, Fayad ZA, Mulder WJ (2009) Nanotechnology in Medical Imaging. Probe Design and Applications. Arterioscler Thromb Vasc Biol.

    Google Scholar 

  253. Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G, et al. (2007) Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles. Int J Cancer 120:1951–7.

    CAS  PubMed  Google Scholar 

  254. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, et al. (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A 106:685–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Syrota A, Paillotin G, Davy JM, Aumont MC (1984) Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by positron emission tomography. Life Sci 35:937–45.

    CAS  PubMed  Google Scholar 

  256. Elsinga PH, van Waarde A, Vaalburg W (2004) Receptor imaging in the thorax with PET. Eur J Pharmacol 499:1–13.

    CAS  PubMed  Google Scholar 

  257. Reid AE, Ding YS, Eckelman WC, Logan J, Alexoff D, Shea C, et al. (2008) Comparison of the pharmacokinetics of different analogs of 11C-labeled TZTP for imaging muscarinic M2 receptors with PET. Nucl Med Biol 35:287–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. van Oosten EM, Wilson AA, Stephenson KA, Mamo DC, Pollock BG, Mulsant BH, et al. (2009) An improved radiosynthesis of the muscarinic M2 radiopharmaceutical, [18F]FP-TZTP. Appl Radiat Isot 67:611–6.

    PubMed  Google Scholar 

  259. Kiesewetter DO, Vuong BK, Channing MA (2003) The automated radiosynthesis of [18F]FP-TZTP. Nucl Med Biol 30:73–7.

    CAS  PubMed  Google Scholar 

  260. Pike VW, Law MP, Osman S, Davenport RJ, Rimoldi O, Giardina D, et al. (2000) Selection, design and evaluation of new radioligands for PET studies of cardiac adrenoceptors. Pharm Acta Helv 74:191–200.

    CAS  PubMed  Google Scholar 

  261. Law MP, Osman S, Pike VW, Davenport RJ, Cunningham VJ, Rimoldi O, et al. (2000) Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 27:7–17.

    CAS  PubMed  Google Scholar 

  262. Park-Holohan SJ, Asselin MC, Turton DR, Williams SL, Hume SP, Camici PG, et al. (2008) Quantification of [11C]GB67 binding to cardiac alpha1-adrenoceptors with positron emission tomography: validation in pigs. Eur J Nucl Med Mol Imaging 35:1624–35.

    PubMed  Google Scholar 

  263. Kopka K, Law MP, Breyholz HJ, Faust A, Holtke C, Riemann B, et al. (2005) Non-invasive molecular imaging of beta-adrenoceptors in vivo: perspectives for PET-radioligands. Curr Med Chem 12:2057–74.

    CAS  PubMed  Google Scholar 

  264. Momose M, Reder S, Raffel DM, Watzlowik P, Wester HJ, Nguyen N, et al. (2004) Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 45:471–7.

    CAS  PubMed  Google Scholar 

  265. Wagner S, Kopka K, Law MP, Riemann B, Pike VW, Schober O, et al. (2004) Synthesis and first in vivo evaluation of new selective high affinity beta1-adrenoceptor radioligands for SPECT based on ICI 89,406. Bioorg Med Chem 12:4117–32.

    CAS  PubMed  Google Scholar 

  266. Helisch A, Schirrmacher E, Thews O, Schirrmacher R, Buchholz HG, Dillenburg W, et al. (2005) Demonstration of pulmonary beta2-adrenergic receptor binding in vivo with [18F]fluoroethyl-fenoterol in a guinea pig model. Eur J Nucl Med Mol Imaging 32:1324–8.

    CAS  PubMed  Google Scholar 

  267. Schirrmacher E, Schirrmacher R, Thews O, Dillenburg W, Helisch A, Wessler I, et al. (2003) Synthesis and preliminary evaluation of (R,R)(S,S) 5-(2-(2-[4-(2-[(18)F]fluoroethoxy)phenyl]-1-methylethylamino)-1-hydroxyethyl)-ben zene-1,3-diol ([(18)F]FEFE) for the in vivo visualisation and quantification of the beta2-adrenergic receptor status in lung. Bioorg Med Chem Lett 13:2687–92.

    Google Scholar 

  268. Stephenson KA, van Oosten EM, Wilson AA, Meyer JH, Houle S, Vasdev N (2008) Synthesis and preliminary evaluation of [(18)F]-fluoro-(2S)-Exaprolol for imaging cerebral beta-adrenergic receptors with PET. Neurochem Int 53:173–9.

    CAS  PubMed  Google Scholar 

  269. van Waarde A, Doorduin J, de Jong JR, Dierckx RA, Elsinga PH (2008) Synthesis and preliminary evaluation of (S)-[11C]-exaprolol, a novel beta-adrenoceptor ligand for PET. Neurochem Int 52:729–33.

    PubMed  Google Scholar 

  270. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Blankenberg FG (2008) In vivo imaging of apoptosis. Cancer Biol Ther 7:1525–32.

    CAS  PubMed  Google Scholar 

  273. Kenis H, van Genderen H, Bennaghmouch A, Rinia HA, Frederik P, Narula J, et al. (2004) Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J Biol Chem 279:52623–9.

    CAS  PubMed  Google Scholar 

  274. Doue T, Ohtsuki K, Ogawa K, Ueda M, Azuma A, Saji H, et al. (2008) Cardioprotective effects of erythropoietin in rats subjected to ischemia-reperfusion injury: assessment of infarct size with 99mTc-annexin V. J Nucl Med 49:1694–700.

    CAS  PubMed  Google Scholar 

  275. Zhao Y, Kuge Y, Zhao S, Strauss HW, Blankenberg FG, Tamaki N (2008) Prolonged high-fat feeding enhances aortic 18F-FDG and 99mTc-annexin A5 uptake in apolipoprotein E-deficient and wild-type C57BL/6J mice. J Nucl Med 49:1707–14.

    PubMed  Google Scholar 

  276. Wong E, Kumar V, Howman-Giles RB, Vanderheyden JL (2008) Imaging of Therapy-Induced Apoptosis Using (99m)Tc-HYNIC-Annexin V in Thymoma Tumor-Bearing Mice. Cancer Biother Radiopharm.

    Google Scholar 

  277. Salouti M, Rajabi H, Babaei MH, Rasaee MJ (2008) Breast tumor targeting with (99m)Tc-HYNIC-PR81 complex as a new biologic radiopharmaceutical. Nucl Med Biol 35:763–8.

    CAS  PubMed  Google Scholar 

  278. Boersma HH, Liem IH, Kemerink GJ, Thimister PW, Hofstra L, Stolk LM, et al. (2003) Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br J Radiol 76:553–60.

    CAS  PubMed  Google Scholar 

  279. Tait JF, Brown DS, Gibson DF, Blankenberg FG, Strauss HW (2000) Development and characterization of annexin V mutants with endogenous chelation sites for (99m)Tc. Bioconjug Chem 11:918–25.

    CAS  PubMed  Google Scholar 

  280. Tait JF, Smith C, Blankenberg FG (2005) Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med 46:807–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Tait JF, Smith C, Levashova Z, Patel B, Blankenberg FG, Vanderheyden JL (2006) Improved detection of cell death in vivo with annexin V radiolabeled by site-specific methods. J Nucl Med 47:1546–53.

    CAS  PubMed  Google Scholar 

  282. Li X, Link JM, Stekhova S, Yagle KJ, Smith C, Krohn KA, et al. (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem 19:1684–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Zhao M, Zhu X, Ji S, Zhou J, Ozker KS, Fang W, et al. (2006) 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47:1367–74.

    CAS  PubMed  Google Scholar 

  284. Wang F, Fang W, Zhao M, Wang Z, Ji S, Li Y, et al. (2008) Imaging paclitaxel (chemotherapy)-induced tumor apoptosis with 99mTc C2A, a domain of synaptotagmin I: a preliminary study. Nucl Med Biol 35:359–64.

    CAS  PubMed  Google Scholar 

  285. Zhao M, Li Z, Bugenhagen S (2008) 99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J Nucl Med 49:1345–52.

    CAS  PubMed  Google Scholar 

  286. Reshef A, Shirvan A, Waterhouse RN, Grimberg H, Levin G, Cohen A, et al. (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520–8.

    CAS  PubMed  Google Scholar 

  287. Blasberg R (2002) PET imaging of gene expression. Eur J Cancer 38:2137–46.

    CAS  PubMed  Google Scholar 

  288. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–32.

    CAS  PubMed  Google Scholar 

  289. Sundaresan G, Gambhir S (2002) Radionuclide imaging of reporter gene expression. In: Toga A, Mazziotta J, eds. Brain mapping the methods, second ed. San Diego: Academic Press, pp 799–818.

    Google Scholar 

  290. Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49 Suppl 2:164S–79S.

    CAS  PubMed  Google Scholar 

  291. Chacko AM, Qu W, Kung HF (2008) Synthesis and in vitro evaluation of 5-[(18)f]fluoroalkyl pyrimidine nucleosides for molecular imaging of herpes simplex virus type 1 thymidine kinase reporter gene expression. J Med Chem 51:5690–701.

    CAS  PubMed  Google Scholar 

  292. Yaghoubi SS, Couto MA, Chen CC, Polavaram L, Cui G, Sen L, et al. (2006) Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk’s expression. J Nucl Med 47:706–15.

    CAS  PubMed  Google Scholar 

  293. Ponomarev V, Doubrovin M, Shavrin A, Serganova I, Beresten T, Ageyeva L, et al. (2007) A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med 48:819–26.

    CAS  PubMed  Google Scholar 

  294. Shiba K, Torashima T, Hirai H, Ogawa K, Akhter N, Nakajima K, et al. (2009) Potential usefulness of D2R reporter gene imaging by IBF as gene therapy monitoring for cerebellar neurodegenerative diseases. J Cereb Blood Flow Metab 29:434–40.

    CAS  PubMed  Google Scholar 

  295. Lohith TG, Furukawa T, Mori T, Kobayashi M, Fujibayashi Y (2008) Basic evaluation of FES-hERL PET tracer-reporter gene system for in vivo monitoring of adenoviral-mediated gene therapy. Mol Imaging Biol 10:245–52.

    PubMed  Google Scholar 

  296. Rogers BE, Parry JJ, Andrews R, Cordopatis P, Nock BA, Maina T (2005) MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and (94m)Tc-Demotate 1. J Nucl Med 46:1889–97.

    CAS  PubMed  Google Scholar 

  297. Terrovitis J, Kwok KF, Lautamaki R, Engles JM, Barth AS, Kizana E, et al. (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52:1652–60.

    PubMed  Google Scholar 

  298. Alauddin MM, Shahinian A, Park R, Tohme M, Fissekis JD, Conti PS (2007) In vivo evaluation of 2'-deoxy-2'-[(18)F]fluoro-5-iodo-1-beta-D-arabinofuranosyluracil ([18F]FIAU) and 2'-deoxy-2'-[18F]fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil ([18F]FEAU) as markers for suicide gene expression. Eur J Nucl Med Mol Imaging 34:822–9.

    PubMed  Google Scholar 

  299. Cai H, Yin D, Zhang L, Yang X, Xu X, Liu W, et al. (2007) Preparation and biological evaluation of 2-amino-6-[18F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl) purine (6-[18F]FPCV) as a novel PET probe for imaging HSV1-tk reporter gene expression. Nucl Med Biol 34:717–25.

    CAS  PubMed  Google Scholar 

  300. Johnson M, Karanikolas BD, Priceman SJ, Powell R, Black ME, Wu HM, et al. (2009) Titration of Variant HSV1-tk Gene Expression to Determine the Sensitivity of 18F-FHBG PET Imaging in a Prostate Tumor. J Nucl Med 50:757–764.

    CAS  PubMed Central  PubMed  Google Scholar 

  301. Min JJ, Gambhir SS (2008) Molecular imaging of PET reporter gene expression. Handb Exp Pharmacol:277–303.

    Google Scholar 

  302. Ziegler-Graham K, Brookmeyer R, Johnson E, Arrighi HM (2008) Worldwide variation in the doubling time of Alzheimer's disease incidence rates. Alzheimers Dement 4:316–23.

    PubMed  Google Scholar 

  303. Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80 Spec No 2:S160–7.

    Google Scholar 

  304. Coleman RE (2005) Positron emission tomography diagnosis of Alzheimer’s disease. Neuroimaging Clin N Am 15:837–46, x.

    Google Scholar 

  305. Friedland RP, Kalaria R, Berridge M, Miraldi F, Hedera P, Reno J, et al. (1997) Neuroimaging of vessel amyloid in Alzheimer’s disease. Ann N Y Acad Sci 826:242–7.

    CAS  PubMed  Google Scholar 

  306. Henriksen G, Yousefi BH, Drzezga A, Wester HJ (2008) Development and evaluation of compounds for imaging of beta-amyloid plaque by means of positron emission tomography. Eur J Nucl Med Mol Imaging 35 Suppl 1:S75–81.

    CAS  PubMed  Google Scholar 

  307. Nordberg A (2008) Amyloid imaging in Alzheimer's disease. Neuropsychologia 46:1636–41.

    PubMed  Google Scholar 

  308. Cai L, Innis RB, Pike VW (2007) Radioligand development for PET imaging of beta-amyloid (Abeta)--current status. Curr Med Chem 14:19–52.

    Google Scholar 

  309. Serdons K, Verduyckt T, Vanderghinste D, Borghgraef P, Cleynhens J, Van Leuven F, et al. (2009) 11C-labelled PIB analogues as potential tracer agents for in vivo imaging of amyloid beta in Alzheimer’s disease. Eur J Med Chem 44:1415–26.

    CAS  PubMed  Google Scholar 

  310. Serdons K, Verduyckt T, Vanderghinste D, Cleynhens J, Borghgraef P, Vermaelen P, et al. (2009) Synthesis of 18F-labelled 2-(4'-fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB. Bioorg Med Chem Lett 19:602–5.

    CAS  PubMed  Google Scholar 

  311. Serdons K, Terwinghe C, Vermaelen P, Van Laere K, Kung H, Mortelmans L, et al. (2009) Synthesis and Evaluation of (18)F-Labeled 2-Phenylbenzothiazoles as Positron Emission Tomography Imaging Agents for Amyloid Plaques in Alzheimer's Disease. J Med Chem.

    Google Scholar 

  312. Verdurand M, Bort G, Tadino V, Bonnefoi F, Le Bars D, Zimmer L (2008) Automated radiosynthesis of the Pittsburg compound-B using a commercial synthesizer. Nucl Med Commun 29:920–6.

    CAS  PubMed  Google Scholar 

  313. Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF (2005) F-18 stilbenes as PET imaging agents for detecting beta-amyloid plaques in the brain. J Med Chem 48:5980–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  314. Stephenson KA, Chandra R, Zhuang ZP, Hou C, Oya S, Kung MP, et al. (2007) Fluoro-pegylated (FPEG) imaging agents targeting Abeta aggregates. Bioconjug Chem 18:238–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF (2005) F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl Med Biol 32:799–809.

    CAS  PubMed  Google Scholar 

  316. Qu W, Choi SR, Hou C, Zhuang Z, Oya S, Zhang W, et al. (2008) Synthesis and evaluation of indolinyl- and indolylphenylacetylenes as PET imaging agents for beta-amyloid plaques. Bioorg Med Chem Lett 18:4823–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  317. Wey SP, Weng CC, Lin KJ, Yao CH, Yen TC, Kung HF, et al. (2009) Validation of an 18F-labeled biphenylalkyne as a positron emission tomography imaging agent for beta-amyloid plaques. Nucl Med Biol 36:411–7.

    CAS  PubMed  Google Scholar 

  318. Cai L, Cuevas J, Temme S, Herman MM, Dagostin C, Widdowson DA, et al. (2007) Synthesis and structure-affinity relationships of new 4-(6-iodo-H-imidazo[1,2-a]pyridin-2-yl)-N-dimethylbenzeneamine derivatives as ligands for human beta-amyloid plaques. J Med Chem 50:4746–58.

    CAS  PubMed  Google Scholar 

  319. Cai L, Liow JS, Zoghbi SS, Cuevas J, Baetas C, Hong J, et al. (2008) Synthesis and evaluation of N-methyl and S-methyl 11C-labeled 6-methylthio-2-(4'-N,N-dimethylamino)phenylimidazo[1,2-a]pyridines as radioligands for imaging beta-amyloid plaques in Alzheimer’s disease. J Med Chem 51:148–58.

    Google Scholar 

  320. Chianelli M, Boerman OC, Malviya G, Galli F, Oyen WJ, Signore A (2008) Receptor binding ligands to image infection. Curr Pharm Des 14:3316–25.

    CAS  PubMed  Google Scholar 

  321. Rennen H, Bleeker-Rovers C, Oyen WJ (2006) Imaging infection and inflammation. In: Schiepers C, ed. Diagnostic nuclear medicine, second edition ed. Berlin: Springer, pp 113–126.

    Google Scholar 

  322. Rennen HJ, Boerman OC, Oyen WJ, Corstens FH (2003) Kinetics of 99mTc-labeled interleukin-8 in experimental inflammation and infection. J Nucl Med 44:1502–9.

    CAS  PubMed  Google Scholar 

  323. Rennen HJ, Bleeker-Rovers CP, van Eerd JE, Frielink C, Oyen WJ, Corstens FH, et al. (2004) 99mTc-labeled interleukin-8 for scintigraphic detection of pulmonary infections. Chest 126:1954–61.

    CAS  PubMed  Google Scholar 

  324. Krause S, Rennen HJ, Boerman OC, Baumann S, Cyr JE, Manchanda R, et al. (2007) Preclinical evaluation of technetium 99m-labeled P1827DS for infection imaging and comparison with technetium 99m IL-8. Nucl Med Biol 34:925–32.

    CAS  PubMed  Google Scholar 

  325. van Eerd JE, Oyen WJ, Harris TD, Rennen HJ, Edwards DS, Corstens FH, et al. (2005) Scintigraphic imaging of infectious foci with an 111In-LTB4 antagonist is based on in vivo labeling of granulocytes. J Nucl Med 46:786–93.

    PubMed  Google Scholar 

  326. van Eerd JE, Broekema M, Harris TD, Edwards DS, Oyen WJ, Corstens FH, et al. (2005) Imaging of infection and inflammation with an improved 99mTc-labeled LTB4 antagonist. J Nucl Med 46:1546–51.

    PubMed  Google Scholar 

  327. Rennen HJ, Laverman P, van Eerd JE, Oyen WJ, Corstens FH, Boerman OC (2007) PET imaging of infection with a HYNIC-conjugated LTB4 antagonist labeled with F-18 via hydrazone formation. Nucl Med Biol 34:691–5.

    CAS  PubMed  Google Scholar 

  328. Britton KE, Wareham DW, Das SS, Solanki KK, Amaral H, Bhatnagar A, et al. (2002) Imaging bacterial infection with (99m)Tc-ciprofloxacin (Infecton). J Clin Pathol 55:817–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  329. Zhang J, Guo H, Zhang S, Lin Y, Wang X (2008) Synthesis and biodistribution of a novel (99m)TcN complex of ciprofloxacin dithiocarbamate as a potential agent for infection imaging. Bioorg Med Chem Lett 18:5168–70.

    CAS  PubMed  Google Scholar 

  330. Diniz SO, Rezende CM, Serakides R, Ferreira RL, Ribeiro TG, Martin-Comin J, et al. (2008) Scintigraphic imaging using technetium-99m-labeled ceftizoxime in an experimental model of acute osteomyelitis in rats. Nucl Med Commun 29:830–6.

    CAS  PubMed  Google Scholar 

  331. Gomes Barreto V, Rabiller G, Iglesias F, Soroa V, Tubau F, Roca M, et al. (2005) [99mTc-ceftizoxime scintigraphy in normal rats and abscess induced rats]. Rev Esp Med Nucl 24:312–8.

    CAS  PubMed  Google Scholar 

  332. Thompson M, Wall DM, Hicks RJ, Prince HM (2005) In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging 49:339–48.

    CAS  PubMed  Google Scholar 

  333. Van Hemert FJ, Voermans C, Van Eck-Smit BL, Bennink RJ (2009) Labeling monocytes for imaging chronic inflammation. Q J Nucl Med Mol Imaging 53:78–88.

    PubMed  Google Scholar 

  334. McAfee JG, Subramanian G, Gagne G (1984) Technique of leukocyte harvesting and labeling: problems and perspectives. Semin Nucl Med 14:83–106.

    CAS  PubMed  Google Scholar 

  335. Palestro CJ, Love C, Bhargava KK (2009) Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging 53:105–23.

    CAS  PubMed  Google Scholar 

  336. Zhou R, Acton PD, Ferrari VA (2006) Imaging stem cells implanted in infarcted myocardium. J Am Coll Cardiol 48:2094–106.

    PubMed Central  PubMed  Google Scholar 

  337. Lee Z, Dennis JE, Gerson SL (2008) Imaging stem cell implant for cellular-based therapies. Exp Biol Med (Maywood) 233:930–40.

    CAS  Google Scholar 

  338. Zhang Y, Ruel M, Beanlands RS, deKemp RA, Suuronen EJ, DaSilva JN (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14:3835–53.

    CAS  PubMed  Google Scholar 

  339. Sheikh AY, Wu JC (2006) Molecular imaging of cardiac stem cell transplantation. Curr Cardiol Rep 8:147–54.

    PubMed  Google Scholar 

  340. Ma B, Hankenson KD, Dennis JE, Caplan AI, Goldstein SA, Kilbourn MR (2005) A simple method for stem cell labeling with fluorine 18. Nucl Med Biol 32:701–5.

    CAS  PubMed  Google Scholar 

  341. Olasz EB, Lang L, Seidel J, Green MV, Eckelman WC, Katz SI (2002) Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 260:137–48.

    CAS  PubMed  Google Scholar 

  342. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 99:3030–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  343. Li ZB, Chen K, Wu Z, Wang H, Niu G, Chen X (2009) (64)Cu-Labeled PEGylated Polyethylenimine for Cell Trafficking and Tumor Imaging. Mol Imaging Biol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Liu .

Editor information

Editors and Affiliations

Additional information

This work is dedicated to Dr. Welch, who passed away on May 6th, 2012.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, Y. (2014). Advances in Radiotracer Development for Molecular Imaging. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_9

Download citation

Publish with us

Policies and ethics