Skip to main content

Preclinical Optical Molecular Imaging

  • Chapter
  • First Online:
Molecular Imaging of Small Animals
  • 1336 Accesses

Abstract

Molecular imaging, especially small-animal preclinical molecular imaging, is a rapidly developing area in the biomedical imaging field [1–3]. Given tremendous needs in biological research and drug development, it becomes imperative to have in vivo imaging strategies for gene expression, protein interactions, and cell behaviours [4]. Molecular imaging has been demonstrated to be instrumental or promising in observing all these biological processes at the cellular and molecular levels. Since optical labelling methods with probes based on fluorescence and bioluminescence have been extensively applied in vitro, it was natural to transfer corresponding strategies to in vivo settings, and there have been successful over the past several years [1, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ntziachristos V, Ripoll J, Wang LV, Weisslder R (2005) Looking and listening to light: the evolution of whole body photonic imaging. Nature Biotechnology 23 (3):313–320

    CAS  PubMed  Google Scholar 

  2. Weissleder R (2002) Scaling Down Imaging: Molecular Mapping of Cancer in Mice. Nature Reviews Cancer 2:11–18

    CAS  PubMed  Google Scholar 

  3. Herschman H (2003) Molecular imaging: looking at problems, seeing solutions. Science 302 (5645):605–608

    CAS  PubMed  Google Scholar 

  4. Weissleder R (1999) Molecular Imaging: exploring the Next Frontier. Radiology 212 (3):609–614

    CAS  PubMed  Google Scholar 

  5. Contag CH, Bachmann MH (2002) Advances in bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering 4:235–260

    CAS  PubMed  Google Scholar 

  6. Ntziachristos V (2006) Fluorescence molecular imaging. Annual Review of Biomedical Engineering 8:1–33

    CAS  PubMed  Google Scholar 

  7. Ntziachristos V, Tung C-H, Bremer C, Weissleder R (2002) Fluorescence-mediated tomography resolves protease activity in vivo. Nature Medicine 8 (7):757–760

    CAS  PubMed  Google Scholar 

  8. Wang G, Hoffman EA, McLennan G, Wang LV, Suter M, Meinel JF (2003) Development of the first bioluminescence CT scanner. Radiology 566:229

    Google Scholar 

  9. Wang G, Cong W, Shen H, Qian X, Henry M, Wang Y (2008) Overview of bioluminescence tomography--a new molecular imaging modality. Frontiers in Bioscience 13:1281–1293

    Google Scholar 

  10. Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. Journal of Biomedical Optics 10:041210–041210

    Google Scholar 

  11. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Methods 4 (8):641–643

    CAS  PubMed  Google Scholar 

  12. Wilson T, Hastings J (1998) Bioluminescence. Annual Review of Cell and Developmental Biology 14 (1):197–230

    CAS  PubMed  Google Scholar 

  13. Jobsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198 (4323):1264–1267

    CAS  PubMed  Google Scholar 

  14. So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology 24 (3):339–343

    CAS  PubMed  Google Scholar 

  15. Villalobos V, Naik S, Piwnica-Worms D (2007) Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annual Review of Biomedical Engineering 9:321–349

    CAS  PubMed  Google Scholar 

  16. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron emitting radiotracers. Physics in Medicine and Biology 54 (16):N355–365

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cho JS, Taschereau R, Olma S, Liu K, Chen YC, Shen CK, van Dam RM, Chatziioannou AF (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Physics in Medicine and Biology 54 (22):6757–6771

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Tsien R (2005) Building and breeding molecules to spy on cells and tumors. FEBS letters 579 (4):927–932

    CAS  PubMed  Google Scholar 

  19. Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, Tsien RY (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324 (5928):804–807

    PubMed Central  PubMed  Google Scholar 

  20. Ohnukia T, Michaletb X, Tripathia A, Weissb S, Arisaka K Development of an Ultra-fast Single-Photon Counting Imager for Single-Molecule Imaging. In: Biomedical Optics, 2006. International Society for Optics and Photonics, pp 60920P–60920P

    Google Scholar 

  21. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. Journal of Biomedical Optics 6 (4):432–440

    CAS  PubMed  Google Scholar 

  22. Nelson M, Rice B, Bates B, Beeman B, Cable M (2005) Light calibration device for use in low level light imaging systems. U.S. Patent No. 6919919

    Google Scholar 

  23. Hillman EM, Moore A (2007) All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nature Photonics 1 (9):526–530

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Mayes P, Dicker D, Liu Y, El-Deiry W (2008) Noninvasive vascular imaging in fluorescent tumors using multispectral unmixing. Biotechniques 45 (4):459–464

    CAS  PubMed  Google Scholar 

  25. Jain R, Munn L (2002) Dissecting tumour pathophysiology using intravital microscopy. Nature Reviews Cancer 2 (4):266–276

    CAS  PubMed  Google Scholar 

  26. Condeelis J, Segall J (2003) Intravital imaging of cell movement in tumours. Nature Reviews Cancer 3 (12):921–930

    CAS  PubMed  Google Scholar 

  27. Wei X, Runnels J, Lin C (2003) Selective uptake of indocyanine green by reticulocytes in circulation. Investigative Ophthalmology & Visual Science 44 (10):4489–4496

    Google Scholar 

  28. Wang T, Contag C, Mandella M, Chan N, Kino G (2003) Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection. Optics Letters 28 (20):1915–1917

    PubMed Central  PubMed  Google Scholar 

  29. Yang M, Baranov E, Jiang P, Sun F, Li X, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proceedings of the National Academy of Sciences of the United States of America 97 (3):1206–1211

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca E, Li C (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Research 63 (22):7870–7875

    CAS  PubMed  Google Scholar 

  31. Zaheer A, Lenkinski R, Mahmood A, Jones A, Cantley L, Frangioni J (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nature Biotechnology 19 (12):1148–1154

    CAS  PubMed  Google Scholar 

  32. Weissleder R, Tung C, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology 17:375–378

    CAS  PubMed  Google Scholar 

  33. Wunder A, Tung C, Müller-Ladner U, Weissleder R, Mahmood U (2004) In vivo imaging of protease activity in arthritis. Arthritis and Rheumatism 50:2459–2465

    CAS  PubMed  Google Scholar 

  34. Mahmood U Near infrared optical imaging system to detect tumor protease activity. 1999. Radiology 213:866–870

    CAS  PubMed  Google Scholar 

  35. Franceschini M, Moesta K, Fantini S, Gaida G, Gratton E, Jess H, Mantulin W, Seeber M, Schlag P, Kaschke M (1997) Frequency-domain techniques enhance optical mammography: initial clinical results. Proceedings of the National Academy of Sciences of the United States of America 94 (12):6468–6473

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Grosenick D, Moesta K, Wabnitz H, Mucke J, Stroszczynski C, Macdonald R, Schlag P, Rinneberg H (2003) Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors. Applied Optics 42:3170–3186

    PubMed  Google Scholar 

  37. Taroni P, Danesini G, Torricelli A, Pifferi A, Spinelli L, Cubeddu R (2004) Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. Journal of Biomedical Optics 9 (03):464–473

    PubMed  Google Scholar 

  38. Hwang K, Houston J, Rasmussen J, Joshi A, Ke S, Li C, Sevick-Muraca E (2005) Improved excitation light rejection enhances small-animal fluorescent optical imaging. Molecular Imaging 4 (3):194

    PubMed  Google Scholar 

  39. Ntziachristos V, Turner G, Dunham J, Windsor S, Soubret A, Ripoll J, Shih H (2005) Planar fluorescence imaging using normalized data. Journal of Biomedical Optics 10:064007

    PubMed  Google Scholar 

  40. Virostko J, Powers AC, Jansen ED (2007) Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images. Applied Optics 46:2540–2547

    PubMed  Google Scholar 

  41. Cong W, Wang G, Kumar D, Liu Y, Jiang M, Wang LV, Hoffman EA, McLennan G, McCray PB, Zabner J, Cong A (2005) Practical reconstruction method for bioluminescence tomography. Optics Express 13 (18):6756–6771

    PubMed  Google Scholar 

  42. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Physics in Medicine and Biology 50:4225–4241

    PubMed Central  PubMed  Google Scholar 

  43. Lv Y, Tian J, Cong W, Wang G, Yang W, Qin C, Xu M (2007) Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Physics in Medicine and Biology 52:4497–4512

    PubMed  Google Scholar 

  44. Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. Journal of Biomedical Optics 12:024007

    PubMed  Google Scholar 

  45. Chaudhari AJ, Darvas F, Bading JR, Moats RA, Conti PS, Smith DJ, Cherry SR, Leahy RM (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Physics in Medicine and Biology 50 (23):5421–5441

    PubMed  Google Scholar 

  46. Dehghani H, Davis SC, Jiang S, Pogue BW, Paulsen KD, Patterson MS (2006) Spectrally resolved bioluminescence optical tomography. Optics Letters 31:365–367

    PubMed  Google Scholar 

  47. Cong A, Wang G (2006) Multispectral bioluminescence tomography: methodology and simulation. International Journal of Biomedical Imaging 2006

    Google Scholar 

  48. Arridge SR (1999) Optical tomography in medical imaging. Inverse problems 15:R41-R93

    Google Scholar 

  49. Segars WP, Tsui BMW, Frey EC, Johnson GA, Berr SS (2004) Development of a 4D digital mouse phantom for molecular imaging research. Molecular Imaging and Biology 6:149–159

    PubMed  Google Scholar 

  50. Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Physics in Medicine and Biology 52 (3):577–587

    PubMed Central  PubMed  Google Scholar 

  51. Comsa D, Farrell T, Patterson M (2006) Quantification of bioluminescence images of point source objects using diffusion theory models. Physics in Medicine and Biology 51 (15):3733–3746

    CAS  PubMed  Google Scholar 

  52. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Physics in Medicine and Biology 50:R1-R43

    CAS  PubMed  Google Scholar 

  53. Guven M, Yazici B, Intes X, Chance B (2005) Diffuse optical tomography with a priori anatomical information. Physics in Medicine and Biology 50:2837–2858

    PubMed  Google Scholar 

  54. Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnology 21 (7):803–806

    CAS  PubMed  Google Scholar 

  55. Wang L (2009) Multiscale photoacoustic microscopy and computed tomography. Nature Photonics 3 (9):503–509

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Wang G, Shen H, Cong W, Zhao S, Wei Wei G (2006) Temperature-modulated bioluminescence tomography. Optics Express 14:7852–7871

    PubMed  Google Scholar 

  57. Shah J, Park S, Aglyamov S, Larson T, Ma L, Sokolov K, Johnston K, Milner T, Emelianov S (2008) Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics 13:034024

    PubMed Central  PubMed  Google Scholar 

  58. Barbour R, Graber H, Chang J, Barbour S, Koo P, Aronson R (1995) MRI-guided optical tomography: prospects and computation for a new imaging method. IEEE Computational Science & Engineering 2 (4):63–77

    Google Scholar 

  59. Brooksby B, Dehghani H, Pogue B, Paulsen K (2003) Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities. IEEE Journal of Selected Topics in Quantum Electronics 9 (2):199–209

    CAS  Google Scholar 

  60. Schweiger M, Arridge S (1999) Optical tomographic reconstruction in a complex head model using a priori region boundary information. Physics in Medicine and Biology 44:2703–2722

    CAS  PubMed  Google Scholar 

  61. Pogue B, Paulsen K (1998) High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information. Optics Letters 23 (21):1716–1718

    CAS  PubMed  Google Scholar 

  62. Ntziachristos V, Yodh A, Schnall M, Chance B (2002) MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia (New York, NY) 4 (4):347

    Google Scholar 

  63. Li C, Mitchell G, Dutta J, Ahn S, Leahy R, Cherry S (2009) A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design. Optics Express 17 (9):7571–7585

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Li C, Wang G, Qi J, Cherry S (2009) Three-dimensional fluorescence optical tomography in small-animal imaging using simultaneous positron-emission-tomography priors. Optics Letters 34 (19):2933–2935

    PubMed Central  PubMed  Google Scholar 

  65. Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster R, Ntziachristos V (2009) Multispectral opto-acoustic tomography of deep seated fluorescent proteins in vivo. Nature Photonics 3 (7):412–417

    CAS  Google Scholar 

  66. Wang G, Cong W, Durairaj K, Qian X, Shen H, Sinn P, Hoffman E, McLennan G, Henry M (2006) In vivo mouse studies with bioluminescence tomography. Optics Express 14:7801–7809

    PubMed  Google Scholar 

  67. Wang G, Shen H, Durairaj K, Qian X, Cong W (2006) The First Bioluminescence Tomography System for Simultaneous Acquisition of Multiview and Multispectral Data. International Journal of Biomedical Imaging 2006:Article ID 58601

    Google Scholar 

  68. Wang G, Cong A, Han W, Jiang M, Shen H, Cong W (2007) Systems and methods for multi-spectral bioluminescence tomography.

    Google Scholar 

  69. Hardeberg J, Schmitt F, Brettel H (2002) Multispectral color image capture using a liquid crystal tunable filter. Optical Engineering 41:2532

    Google Scholar 

  70. Lu Y, Douraghy A, Machado H, Stout D, Tian J, Herschman H, Chatziioannou A (2009) Spectrally resolved bioluminescence tomography with the SP3 approximation. Physics in Medicine and Biology 54:6477–6493

    PubMed Central  PubMed  Google Scholar 

  71. Wang G, Shen H, Liu Y, Cong A, Cong W, Wang Y, Dubey P (2008) Digital spectral separation methods and systems for bioluminescence imaging. Optics Express 16 (3):1719–1732

    PubMed  Google Scholar 

  72. Kuo C, Coquoz O, Troy T, Zwarg D, Rice B (2005) Bioluminescent Tomography for in vivo Localization and Quantification of luminescent Sources from a Multiple-view Imaging System. Molecular Imaging 4 (3):370

    Google Scholar 

  73. Rannou F, Kohli V, Prout D, Chatziioannou A (2004) Investigation of OPET performance using GATE, a Geant4-based simulation software. IEEE Transactions on Nuclear Science 51 (5):2713–2717

    PubMed Central  PubMed  Google Scholar 

  74. Prout D, Silverman R, Chatziioannou A (2005) Readout of the optical PET (OPET) detector. IEEE Transactions on Nuclear Science 52 (1):28–32

    PubMed Central  PubMed  Google Scholar 

  75. Douraghy A, Prout D, Silverman R, Chatziioannou A (2006) Evaluation of scintillator afterglow for use in a combined optical and PET imaging tomograph. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 569 (2):557–562

    CAS  Google Scholar 

  76. Douraghy A, Rannou F, Alexandrakis G, Silverman R, Chatziioannou A (2008) FPGA electronics for OPET: a dual-modality optical and positron emission tomograph. IEEE Transactions on Nuclear Science 55:2541–2545

    Google Scholar 

  77. Sevick E, Chance B, Leigh J, Nioka S, Maris M (1991) Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation. Analytical Biochemistry 195 (2):330–351

    CAS  PubMed  Google Scholar 

  78. Chance B (1991) Optical method. Annual Review of Biophysics and Biophysical Chemistry 20 (1):1–30

    CAS  PubMed  Google Scholar 

  79. Godavarty A, Eppstein M, Zhang C, Theru S, Thompson A, Gurfinkel M, Sevick-Muraca E (2003) Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Physics in Medicine and Biology 48 (12):1701–1720

    PubMed  Google Scholar 

  80. Thompson A, Sevick-Muraca E (2003) Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy. Journal of Biomedical Optics 8:111–120

    PubMed  Google Scholar 

  81. Schulz R, Peter J, Semmler W, D’Andrea C, Valentini G, Cubeddu R (2006) Comparison of noncontact and fiber-based fluorescence mediated tomography. Optics Letters 31 (6):769–771

    PubMed  Google Scholar 

  82. Joshi A, Bangerth W, Sevick-Muraca EM (2006) Non-contact fluorescence optical tomography with scanning patterned illumination. Optics Express 14(14):6516–6534

    PubMed  Google Scholar 

  83. Turner G, Zacharakis G, Soubret A, Ripoll J, Ntziachristos V (2005) Complete-angle projection diffuse optical tomography by use of early photons. Optics Letters 30 (4):409–411

    PubMed  Google Scholar 

  84. Wang G, Li Y, Jiang M (2004) Uniqueness theorems in bioluminescence tomography. Medical Physics 31 (8):2289–2299

    PubMed  Google Scholar 

  85. Jiang M, Wang G (2007) Uniqueness results for multi-spectral bioluminescence tomography (invited). Paper presented at the An Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore di Pisa, Italy, October 15 - 20

    Google Scholar 

  86. Han W, Cong W, Wang G (2006) Mathematical theory and numerical analysis of bioluminescence tomography. Inverse problems 22 (5):1659

    Google Scholar 

  87. Wang G, Jiang M, Tian J, Cong W, Li Y, Han W, Kumar D, Qian X, Shen H, Zhou T, Cheng J, Lv Y, Li H, Luo J (2006) Recent Development in Bioluminescence Tomography. Current Medical Imaging Reviews 4:453–457

    Google Scholar 

  88. Wang L, Jacques SL, Zheng L (1995) MCML - Monte Carlo modeling of photon transport in multi-layered tissues. Computer Methods and Programs in Biomedicine 47:131–146

    CAS  PubMed  Google Scholar 

  89. Boas D, Culver J, Stott J, Dunn A (2002) Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Optics Express 10:159–169

    PubMed  Google Scholar 

  90. Li H, Tian J, Zhu F, Cong W, Wang LV, Hoffman EA, Wang G (2004) A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Academic Radiology 11 (9):1029–1038

    PubMed  Google Scholar 

  91. Alerstam E, Svensson T, Andersson-Engels S (2008) Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Journal of Biomedical Optics 13:060504

    PubMed  Google Scholar 

  92. Fang Q, Boas D (2009) Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units. Optics Express 17 (22):20178–20190

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lu Y, Zhang X, Douraghy A, Stout D, Tian J, Chan T, Chatziioannou A (2009) Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Optics Express 17 (10):8062–8080

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Holder S (2005) Electrical Impedance Tomography. Institute of Physics Publishing, Bristol and Philadelphia

    Google Scholar 

  95. Lv Y, Tian J, Cong W, Wang G, Luo J, Yang W, Li H (2006) A multilevel adaptive finite element algorithm for bioluminescence tomography. Optics Express 14 (18):8211–8223

    PubMed  Google Scholar 

  96. Lewis EE, Warren F. Miller J (1984) Computational Methods of Neutron Transport. John Wiley & Sons, New York

    Google Scholar 

  97. Ishimaru A (1997) Wave propagation and scattering in random media. IEEE Press,

    Google Scholar 

  98. Cong W, Wang LV, Wang G (2004) Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium. Biomedical Engineering Online 3:12

    PubMed Central  PubMed  Google Scholar 

  99. Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite element approach for modeling photon transport in tissue. Medical Physics 20:299–309

    CAS  PubMed  Google Scholar 

  100. Lv Y, Tian J, Li H, Luo J, Cong W, Wang G, Kumar D Modeling the forward problem based on the adaptive FEMs framework in bioluminescence tomography. In: SPIE Optics+ Photonics, 2006. p 631801

    Google Scholar 

  101. Hielscher A, Alcouffe R, Barbour R (1998) Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Physics in Medicine and Biology 43 (5):1285–1302

    CAS  PubMed  Google Scholar 

  102. Cong W, Cong A, Shen H, Liu Y, Wang G (2007) Flux vector formulation for photon propagation in the biological tissue. Optics Letters 32(19):2837–2839

    CAS  PubMed  Google Scholar 

  103. Gao H, Zhao H (2009) A Fast-Forward Solver of Radiative Transfer Equation. Transport Theory and Statistical Physics 38 (3):149–192

    CAS  Google Scholar 

  104. Klose AD, Larsen EW (2006) Light transport in biological tissue based on the simplified spherical harmonics equations. Journal of Computational Physics 220 (1):441–470

    Google Scholar 

  105. Lu Y, Chatziioannou A (2009) A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer based model. Communications in Numerical Methods in Engineering 25 (6):751–770

    PubMed Central  PubMed  Google Scholar 

  106. Pham DL, Xu C, Prince JL (2000) Current Methods in Medical Image Segmentation. Annual Review of Biomedical Engineering 2:315–337

    CAS  PubMed  Google Scholar 

  107. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Proceedings of the 14th annual conference on Computer graphics and interactive techniques 21 (4):163–169

    Google Scholar 

  108. Cong A, Liu Y, Kumar D, Cong W, Wang G Geometrical modeling using multiregional marching tetrahedra for bioluminescence tomography. In: Robert L. Galloway JKRC (ed) Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display, 2005. pp 756–763

    Google Scholar 

  109. Cignoni P, Montani C, Scopigno R (1998) A comparison of mesh simplification algorithms. Computers & Graphics 22:37–54

    Google Scholar 

  110. Wu Z (2001) Accurate and Efficient Three-Dimensional Mesh Generation for Biomedical Engineering Applications. Worcester Polytechnic Institute

    Google Scholar 

  111. Owen SJ A Survey of Unstructured Mesh Generation Technology. In: Proceedings of the 7th International Meshing Roundtable, 1998. Pp 239–267

    Google Scholar 

  112. Owen SJ (1998) Meshing Software Survey, Hexahedra and Tetrahedra Mesh Generation Software, http://www.andrew.cmu.edu/user/sowen/software/hexahedra.html; http://www.andrew.cmu.edu/user/sowen/software/tetrahedra.html.

  113. Cong W, Wang G (2006) Boundary integral method for bioluminescence tomography. Journal of Biomedical Optics Letters 11(2):020503–020503

    Google Scholar 

  114. Cong W, Durairaj K, Wang LV, Wang G (2006) A Born-type approximation method for bioluminescence tomography. Medical Physics 33:679–686

    PubMed  Google Scholar 

  115. Dehghani H, Davis S, Pogue B (2008) Spectrally resolved bioluminescence tomography using the reciprocity approach. Medical Physics 35:4863

    PubMed Central  PubMed  Google Scholar 

  116. Jiang M, Zhou T, Cheng J, Cong W, Wang G (2007) Image reconstruction for bioluminescence tomography from partial measurement. Optics Express 15 (18):11095–11116

    PubMed  Google Scholar 

  117. Lv Y, Tian J, Cong W, Wang G (2007) Experimental study on bioluminescence tomography with multimodality fusion. International Journal of Biomedical Imaging 2007:86741

    PubMed Central  PubMed  Google Scholar 

  118. Kuo C, Coquoz O, Stearns DG, Rice. BW Diffuse luminescence imaging tomography of in vivo bioluminescent markers using multi-spectral data. In: Society for Molecular Imaging 3rd Annual Meeting (St. Louis), 2004. Cambridge: MIT Press, p 227

    Google Scholar 

  119. Klose AD (2007) Transport-theory-based stochastic image reconstruction of bioluminescent sources. Journal of the Optical Society of America A 24:1601–1608

    Google Scholar 

  120. Slavine N, Lewis M, Richer E, Antich P (2006) Iterative reconstruction method for light emitting sources based on the diffusion equation. Medical Physics 33:61

    PubMed  Google Scholar 

  121. Alexandrakis G, Rannou FR, Chatziioannou AF (2006) Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system. Physics in Medicine and Biology 51:2045–2053

    PubMed Central  PubMed  Google Scholar 

  122. Gu X, Zhang Q, Larcom L, Jiang H (2004) Three-dimensional bioluminescence tomography with model-based reconstruction. Optics Express 12:3996–4000

    PubMed  Google Scholar 

  123. Cong W, Kumar D, Liu Y, Cong A, Wang G A practical method to determine the light source distribution in bioluminescent imaging. In: Bonse U (ed) Developments in X-Ray Tomography IV, 2004. pp 679–686

    Google Scholar 

  124. Lu Y, Machado HB, Douraghy A, Stout D, Herschman H, Chatziioannou AF (2009) Experimental bioluminescence tomography with fully parallel radiative-transfer-based reconstruction framework. Optics Express 17:16681–16695

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Donoho D (2006) Compressed sensing. IEEE Transactions on Information Theory 52 (4):1289–1306

    Google Scholar 

  126. Candès E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59 (8):1207

    Google Scholar 

  127. Klose AD, Ntziachristos V, Hielscher AH (2005) The inverse source problem based on the radiative transfer equation in optical molecular imaging. Journal of Computational Physics 202:323–345

    Google Scholar 

  128. O’Leary M, Boas D, Li X, Chance B, Yodh A (1996) Fluorescence lifetime imaging in turbid media. Optics Letters 21 (2):158–160

    PubMed  Google Scholar 

  129. Chang J, Graber H, Barbour R (1997) Luminescence optical tomography of dense scattering media. Journal of the Optical Society of America A 14 (1):288–299

    CAS  Google Scholar 

  130. Ntziachristos V, Weissleder R (2001) Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. Optics Letters 26 (12):893–895

    CAS  PubMed  Google Scholar 

  131. Jiang H (1998) Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations. Applied Optics 37:5337–5343

    CAS  PubMed  Google Scholar 

  132. Joshi A, Bangerth W, Sevick-Muraca E (2004) Adaptive finite element based tomography for fluorescence optical imaging in tissue. Optics Express 12 (22):5402–5417

    PubMed  Google Scholar 

  133. Lyons S, Meuwissen R, Krimpenfort P, Berns A (2003) The generation of a conditional reporter that enables bioluminescence imaging of Cre/loxP-dependent tumorigenesis in mice. Cancer Research 63 (21):7042

    CAS  PubMed  Google Scholar 

  134. Rehemtulla A, Stegman L, Cardozo S, Gupta S, Hall D, Contag C, Ross B (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia (New York, NY) 2 (6):491

    Google Scholar 

  135. Jenkins D, Oei Y, Hornig Y, Yu S, Dusich J, Purchio T, Contag P (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clinical and Experimental Metastasis 20 (8):733–744

    CAS  PubMed  Google Scholar 

  136. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nature Reviews Drug Discovery 2 (2):123–131

    CAS  PubMed  Google Scholar 

  137. Ray P, Bauer E, Lyer M Monitoring gene therapy with reporter gene imaging. In: Seminars in nuclear medicine, 2001. vol 4. Elsevier, pp 312–320

    Google Scholar 

  138. Ray P, Wu A, Gambhir S (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Research 63 (6):1160

    CAS  PubMed  Google Scholar 

  139. Cordeau Jr P, Lalancette-Hebert M, Weng Y, Kriz J (2008) Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke 39 (3):935

    CAS  PubMed  Google Scholar 

  140. Graves E, Ripoll J, Weissleder R, Ntziachristos V (2003) A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Medical Physics 30:901

    CAS  PubMed  Google Scholar 

  141. Patwardhan S, Bloch S, Achilefu S, Culver J (2005) Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice. Optics Express 13 (7):2564–2577

    CAS  PubMed  Google Scholar 

  142. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Research 65 (14):6330

    CAS  PubMed  Google Scholar 

  143. Ntziachristos V, Schellenberger E, Ripoll J, Yessayan D, Graves E, Bogdanov A, Josephson L, Weissleder R (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V–Cy5. 5 conjugate. Proceedings of the National Academy of Sciences 101 (33):12294

    CAS  Google Scholar 

  144. Godavarty A, Thompson A, Roy R, Gurfinkel M, Eppstein M, Zhang C, Sevick-Muraca E (2004) Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies. Journal of Biomedical Optics 9:488

    CAS  PubMed  Google Scholar 

  145. Sevick-Muraca E, Sharma R, Rasmussen J, Marshall M, Wendt J, Pham H, Bonefas E, Houston J, Sampath L, Adams K (2008) Imaging of Lymph Flow in Breast Cancer Patients after Microdose Administration of a Near-Infrared Fluorophore: Feasibility Study. Radiology 246 (3):734

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ming Jiang for constructive discussions, Dr. Arion F. Chatziioannou for encouragement and advice, and Dr. Chaincy Kuo for Fig. 8.16. This work is supported by grants NIH R01 EB001458, DOE DE-SC0001234, NIH CA127189, EB001685, CA127189 and EB006036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, Y., Wang, G. (2014). Preclinical Optical Molecular Imaging. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_8

Download citation

Publish with us

Policies and ethics