Skip to main content

Applications of Molecular Small-Animal Imaging in Cardiology

  • Chapter
  • First Online:
Molecular Imaging of Small Animals

Abstract

Cardiovascular disease (CVD) is a leading cause of death in both industrialized and developing countries, claiming more than 800,000 lives in the US and millions more in the rest of the world in recent years. Despite recent reduction in age-specific CVD mortality rate, increasing longevity, urbanization and industrialization has led to a rapid increase in the prevalence of CVD in both developed and developing nations. With surging health care costs the focus is shifting from treatment to prevention of disease as well as developing cost effective diagnostic and prognostic strategies. Conventional imaging modalities such as coronary angiography, echocardiography, myocardial perfusion imaging, computed tomography (CT) and magnetic resonance imaging (MRI), have been historically used to define structure and function as well as to monitor response to therapy, relying on the contrast provided by heterogeneity of anatomy, physiology and metabolism. As such, they provide valuable anatomical and physiological information about vasculature (e.g., extent of the disease, location, presence of calcification) and the myocardium (e.g., ejection fraction, wall thickening, dilatation, viability and cardiac output). However, traditional imaging modalities have limited use in detecting molecular and cellular events that determine the course of disease and its response to therapeutic interventions. Emerging molecular imaging modalities utilizing probes targeted at relevant molecular and cellular events can advance research on pathophysiology, allow early detection of disease, assist in the design of novel therapies, facilitate monitoring disease activity and response to therapy, and provide prognostic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansson GK, Robertson AK, Soderberg-Naucler C (2006) Inflammation and atherosclerosis. Annu Rev Pathol 1:297-329.

    CAS  PubMed  Google Scholar 

  2. Cybulsky MI, Gimbrone MA, Jr. (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788-91.

    CAS  PubMed  Google Scholar 

  3. Sadeghi MM, Schechner JS, Krassilnikova S, Gharaei AA, Zhang J, Kirkiles-Smith N, et al. (2004) Vascular cell adhesion molecule-1-targeted detection of endothelial activation in human microvasculature. Transplant Proc 36:1585-91.

    CAS  PubMed  Google Scholar 

  4. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327-36.

    CAS  PubMed  Google Scholar 

  5. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504-11.

    CAS  PubMed  Google Scholar 

  6. McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. (2008) Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 28:77-83.

    Google Scholar 

  7. Kaufmann BA, Sanders JM, Davis C, Xie A, Aldred P, Sarembock IJ, et al. (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276-84.

    CAS  PubMed  Google Scholar 

  8. Behm CZ, Kaufmann BA, Carr C, Lankford M, Sanders JM, Rose CE, et al. (2008) Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation 117:2902-11.

    CAS  PubMed  Google Scholar 

  9. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037-47.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Kircher MF, Grimm J, Swirski FK, Libby P, Gerszten RE, Allport JR, et al. (2008) Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 117:388-95.

    PubMed Central  PubMed  Google Scholar 

  11. Hartung D, Petrov A, Haider N, Fujimoto S, Blankenberg F, Fujimoto A, et al. (2007) Radiolabeled Monocyte Chemotactic Protein 1 for the detection of inflammation in experimental atherosclerosis. J Nucl Med 48:1816-21.

    PubMed  Google Scholar 

  12. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (2004) (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 45:1245-50.

    CAS  PubMed  Google Scholar 

  13. Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, et al. (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636-41.

    CAS  PubMed  Google Scholar 

  14. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379-87.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, et al. (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218-25.

    CAS  PubMed  Google Scholar 

  16. Christen T, Nahrendorf M, Wildgruber M, Swirski FK, Aikawa E, Waterman P, et al. (2009) Molecular imaging of innate immune cell function in transplant rejection. Circulation 119:1925-32.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276-81.

    CAS  PubMed  Google Scholar 

  18. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663-9.

    CAS  PubMed  Google Scholar 

  19. Jaffer FA, Sosnovik DE, Nahrendorf M, Weissleder R (2006) Molecular imaging of myocardial infarction. J Mol Cell Cardiol 41:921-33.

    CAS  PubMed  Google Scholar 

  20. Zhou Z (2007) New phosphatidylserine receptors: clearance of apoptotic cells and more. Dev Cell 13:759-60.

    CAS  PubMed  Google Scholar 

  21. Fischer K, Voelkl S, Berger J, Andreesen R, Pomorski T, Mackensen A (2006) Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108:4094-101.

    CAS  PubMed  Google Scholar 

  22. Martin S, Pombo I, Poncet P, David B, Arock M, Blank U (2000) Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. Int Arch Allergy Immunol 123:249-58.

    CAS  PubMed  Google Scholar 

  23. Dillon SR, Mancini M, Rosen A, Schlissel MS (2000) Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J Immunol 164:1322-32.

    CAS  PubMed  Google Scholar 

  24. Thiagarajan P, Tait JF (1990) Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 265:17420-3.

    CAS  Google Scholar 

  25. Balasubramanian K, Mirnikjoo B, Schroit AJ (2007) Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem 282:18357-64.

    CAS  PubMed  Google Scholar 

  26. Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, et al. (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32:395-402.

    CAS  PubMed  Google Scholar 

  27. Kietselaer BL, Reutelingsperger CP, Boersma HH, Heidendal GA, Liem IH, Crijns HJ, et al. (2007) Noninvasive detection of programmed cell loss with 99mTc-labeled annexin A5 in heart failure. J Nucl Med 48:562-7.

    CAS  PubMed  Google Scholar 

  28. Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, et al. (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31:469-74.

    CAS  PubMed  Google Scholar 

  29. Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A, Jr. (2003) Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res 63:1936-42.

    CAS  PubMed  Google Scholar 

  30. Medarova Z, Bonner-Weir S, Lipes M, Moore A (2005) Imaging beta-cell death with a near-infrared probe. Diabetes 54:1780-8.

    CAS  PubMed  Google Scholar 

  31. Schellenberger EA, Bogdanov A, Jr., Hogemann D, Tait J, Weissleder R, Josephson L (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 1:102-7.

    CAS  PubMed  Google Scholar 

  32. Tait JF (2008) Imaging of apoptosis. J Nucl Med 49:1573-6.

    PubMed  Google Scholar 

  33. Smith G, Glaser M, Perumal M, Nguyen QD, Shan B, Arstad E, et al. (2008) Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide. J Med Chem 51:8057-67.

    CAS  PubMed  Google Scholar 

  34. Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chenevert TL, Ross BD, et al. (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci U S A 99:16551-5.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, et al. (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472-3.

    CAS  PubMed  Google Scholar 

  36. Semenza GL (2003) Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 54:17-28.

    CAS  PubMed  Google Scholar 

  37. Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, et al. (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 113:1684-91.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270-4.

    CAS  PubMed  Google Scholar 

  39. Lu E, Wagner WR, Schellenberger U, Abraham JA, Klibanov AL, Woulfe SR, et al. (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108:97-103.

    CAS  PubMed  Google Scholar 

  40. Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. (2005) Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111:3255-60.

    CAS  PubMed  Google Scholar 

  41. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203-12.

    CAS  PubMed  Google Scholar 

  42. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW (1991) The vascular endothelial growth factor family of polypeptides. J Cell Biochem 47:211-8.

    CAS  PubMed  Google Scholar 

  43. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669-76.

    CAS  PubMed  Google Scholar 

  44. Pan Q, Chathery Y, Wu Y, Rathore N, Tong RK, Peale F, et al. (2007) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049-56.

    CAS  PubMed  Google Scholar 

  45. Sadeghi MM, Krassilnikova S, Zhang J, Gharaei AA, Fassaei HR, Esmailzadeh L, et al. (2004) Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 110:84-90.

    CAS  PubMed  Google Scholar 

  46. Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H, Hegenloh R, et al. (2008) Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 78:395-403.

    CAS  PubMed  Google Scholar 

  47. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1-9.

    CAS  PubMed  Google Scholar 

  48. Diez J, Lopez B, Gonzalez A, Querejeta R (2001) Clinical aspects of hypertensive myocardial fibrosis. Curr Opin Cardiol 16:328-35.

    CAS  PubMed  Google Scholar 

  49. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562-73.

    CAS  PubMed  Google Scholar 

  50. Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, et al. (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229-35.

    CAS  PubMed  Google Scholar 

  51. Romanic AM, Harrison SM, Bao W, Burns-Kurtis CL, Pickering S, Gu J, et al. (2002) Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc Res 54:549-58.

    CAS  PubMed  Google Scholar 

  52. Fedak PW, Smookler DS, Kassiri Z, Ohno N, Leco KJ, Verma S, et al. (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 110:2401-9.

    CAS  PubMed  Google Scholar 

  53. Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105:1983-8.

    CAS  PubMed  Google Scholar 

  54. Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F, et al. (1998) Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368-72.

    CAS  PubMed  Google Scholar 

  55. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520-30.

    CAS  PubMed  Google Scholar 

  56. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743-8.

    CAS  PubMed  Google Scholar 

  57. Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL (2005) Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111:1800-5.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, et al. (2005) Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112:3157-67.

    CAS  PubMed  Google Scholar 

  59. Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, et al. (2008) Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 118:1953-60.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Doran AC, Meller N, McNamara CA (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28:812-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Johnson LL, Schofield LM, Verdesca SA, Sharaf BL, Jones RM, Virmani R, et al. (2000) In vivo uptake of radiolabeled antibody to proliferating smooth muscle cells in a swine model of coronary stent restenosis. J Nucl Med 41:1535-40.

    CAS  PubMed  Google Scholar 

  62. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938-49.

    CAS  PubMed  Google Scholar 

  63. Libby P (2008) The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 263:517-27.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Bates SM, Lister-James J, Julian JA, Taillefer R, Moyer BR, Ginsberg JS (2003) Imaging characteristics of a novel technetium Tc 99m-labeled platelet glycoprotein IIb/IIIa receptor antagonist in patients With acute deep vein thrombosis or a history of deep vein thrombosis. Arch Intern Med 163:452-6.

    CAS  PubMed  Google Scholar 

  65. Jaffer FA, Tung CH, Wykrzykowska JJ, Ho NH, Houng AK, Reed GL, et al. (2004) Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110:170-6.

    CAS  PubMed  Google Scholar 

  66. Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, et al. (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Taillefer R, Edell S, Innes G, Lister-James J (2000) Acute thromboscintigraphy with (99m)Tc-apcitide: results of the phase 3 multicenter clinical trial comparing 99mTc-apcitide scintigraphy with contrast venography for imaging acute DVT. Multicenter Trial Investigators. J Nucl Med 41:1214-23.

    CAS  Google Scholar 

  68. Dunzinger A, Hafner F, Schaffler G, Piswanger-Soelkner JC, Brodmann M, Lipp RW (2008) 99mTc-apcitide scintigraphy in patients with clinically suspected deep venous thrombosis and pulmonary embolism. Eur J Nucl Med Mol Imaging 35:2082-7.

    PubMed  Google Scholar 

  69. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, et al. (2005) In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112:3437-44.

    PubMed  Google Scholar 

  70. Broisat A, Riou LM, Ardisson V, Boturyn D, Dumy P, Fagret D, et al. (2007) Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p. Eur J Nucl Med Mol Imaging 34:830-40.

    CAS  PubMed  Google Scholar 

  71. Mulder WJ, Strijkers GJ, Briley-Saboe KC, Frias JC, Aguinaldo JG, Vucic E, et al. (2007) Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn Reson Med 58:1164-70.

    PubMed  Google Scholar 

  72. Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JG, Mani V, Briley-Saebo KC, et al. (2006) MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56:601-10.

    PubMed  Google Scholar 

  73. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JG, Weinreb DB, et al. (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A 104:961-6.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Ishino S, Mukai T, Kuge Y, Kume N, Ogawa M, Takai N, et al. (2008) Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (LOX-1) with 99mTc-labeled anti-LOX-1 antibody: potential agent for imaging of vulnerable plaque. J Nucl Med 49:1677-85.

    CAS  PubMed  Google Scholar 

  75. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48:1818-24.

    PubMed  Google Scholar 

  76. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708-11.

    CAS  PubMed  Google Scholar 

  77. Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220-4.

    CAS  PubMed  Google Scholar 

  78. Chen W, Vucic E, Leupold E, Mulder WJ, Cormode DP, Briley-Saebo KC, et al. (2008) Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging 3:233-42.

    CAS  PubMed  Google Scholar 

  79. Hyafil F, Laissy JP, Mazighi M, Tchetche D, Louedec L, Adle-Biassette H, et al. (2006) Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 26:176-81.

    CAS  PubMed  Google Scholar 

  80. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868-74.

    CAS  PubMed  Google Scholar 

  81. Blankenberg FG, Wen P, Dai M, Zhu D, Panchal SN, Tait JF, et al. (2001) Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats. Pediatr Radiol 31:827-35.

    CAS  PubMed  Google Scholar 

  82. Roberts AB, Lees AM, Lees RS, Strauss HW, Fallon JT, Taveras J, et al. (1983) Selective accumulation of low density lipoproteins in damaged arterial wall. J Lipid Res 24:1160-7.

    CAS  PubMed  Google Scholar 

  83. Rosen JM, Butler SP, Meinken GE, Wang TS, Ramakrishnan R, Srivastava SC, et al. (1990) Indium-111-labeled LDL: a potential agent for imaging atherosclerotic disease and lipoprotein biodistribution. J Nucl Med 31:343-50.

    CAS  PubMed  Google Scholar 

  84. Lees AM, Lees RS, Schoen FJ, Isaacsohn JL, Fischman AJ, McKusick KA, et al. (1988) Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 8:461-70.

    CAS  PubMed  Google Scholar 

  85. Nielsen LB, Stender S, Kjeldsen K, Nordestgaard BG (1996) Specific accumulation of lipoprotein(a) in balloon-injured rabbit aorta in vivo. Circ Res 78:615-26.

    CAS  PubMed  Google Scholar 

  86. Hardoff R, Braegelmann F, Zanzonico P, Herrold EM, Lees RS, Lees AM, et al. (1993) External imaging of atherosclerosis in rabbits using an 123I-labeled synthetic peptide fragment. J Clin Pharmacol 33:1039-47.

    CAS  PubMed  Google Scholar 

  87. Iuliano L, Signore A, Vallabajosula S, Colavita AR, Camastra C, Ronga G, et al. (1996) Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis 126:131-41.

    CAS  PubMed  Google Scholar 

  88. Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL (1999) Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 6:41-53.

    CAS  PubMed  Google Scholar 

  89. Rajavashisth TB, Xu XP, Jovinge S, Meisel S, Xu XO, Chai NN, et al. (1999) Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 99:3103-9.

    CAS  PubMed  Google Scholar 

  90. Tsimikas S, Shortal BP, Witztum JL, Palinski W (2000) In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol 20:689-97.

    CAS  PubMed  Google Scholar 

  91. Torzewski M, Shaw PX, Han KR, Shortal B, Lackner KJ, Witztum JL, et al. (2004) Reduced in vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol 24:2307-12.

    CAS  PubMed  Google Scholar 

  92. Briley-Saebo KC, Shaw PX, Mulder WJ, Choi SH, Vucic E, Aguinaldo JG, et al. (2008) Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117:3206-15.

    CAS  PubMed  Google Scholar 

  93. Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, et al. (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200:1359-70.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Aikawa M, Libby P (2004) The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 13:125-38.

    PubMed  Google Scholar 

  95. Ohshima S, Petrov A, Fujimoto S, Zhou J, Azure M, Edwards DS, et al. (2009) Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein e or low-density-lipoprotein receptor. J Nucl Med 50:612-7.

    CAS  PubMed  Google Scholar 

  96. Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, et al. (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109:2554-9.

    PubMed  Google Scholar 

  97. Fujimoto S, Hartung D, Ohshima S, Edwards DS, Zhou J, Yalamanchili P, et al. (2008) Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol 52:1847-57.

    CAS  PubMed  Google Scholar 

  98. Amirbekian V, Aguinaldo JG, Amirbekian S, Hyafil F, Vucic E, Sirol M, et al. (2009) Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo. Radiology 251:429-38.

    PubMed Central  PubMed  Google Scholar 

  99. Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, et al. (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425-32.

    CAS  PubMed  Google Scholar 

  100. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, et al. (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55-62.

    PubMed  Google Scholar 

  101. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, et al. (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292-8.

    CAS  PubMed  Google Scholar 

  102. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, et al. (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766-71.

    PubMed  Google Scholar 

  103. Gross S, Gammon ST, Moss BL, Rauch D, Harding J, Heinecke JW, et al. (2009) Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 15:455-61.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Bjorkerud S, Bjorkerud B (1996) Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 149:367-80.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, et al. (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157:1259-68.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108:3134-9.

    CAS  PubMed  Google Scholar 

  107. Isobe S, Tsimikas S, Zhou J, Fujimoto S, Sarai M, Branks MJ, et al. (2006) Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. J Nucl Med 47:1497-505.

    CAS  PubMed  Google Scholar 

  108. Sarda-Mantel L, Coutard M, Rouzet F, Raguin O, Vrigneaud JM, Hervatin F, et al. (2006) 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26:2153-9.

    CAS  PubMed  Google Scholar 

  109. Rouzet F, Dominguez Hernandez M, Hervatin F, Sarda-Mantel L, Lefort A, Duval X, et al. (2008) Technetium 99m-labeled annexin V scintigraphy of platelet activation in vegetations of experimental endocarditis. Circulation 117:781-9.

    PubMed  Google Scholar 

  110. Gautier EL, Huby T, Witztum JL, Ouzilleau B, Miller ER, Saint-Charles F, et al. (2009) Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 119:1795-804.

    CAS  PubMed  Google Scholar 

  111. Doyle B, Caplice N (2007) Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol 49:2073-80.

    PubMed  Google Scholar 

  112. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103-9.

    CAS  PubMed  Google Scholar 

  113. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1:624-34.

    PubMed Central  PubMed  Google Scholar 

  114. Matter CM, Schuler PK, Alessi P, Meier P, Ricci R, Zhang D, et al. (2004) Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 95:1225-33.

    CAS  PubMed  Google Scholar 

  115. Abrams J (2005) Clinical practice. Chronic stable angina. N Engl J Med 352:2524-33.

    CAS  PubMed  Google Scholar 

  116. Raffel OC, Merchant FM, Tearney GJ, Chia S, Gauthier DD, Pomerantsev E, et al. (2008) In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 29:1721-8.

    PubMed Central  PubMed  Google Scholar 

  117. Zhang Z, Machac J, Helft G, Worthley SG, Tang C, Zaman AG, et al. (2006) Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med 6:3.

    PubMed Central  PubMed  Google Scholar 

  118. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825-31.

    CAS  PubMed  Google Scholar 

  119. Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, et al. (2004) Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 110:2843-50.

    PubMed  Google Scholar 

  120. Narula J, Petrov A, Bianchi C, Ditlow CC, Lister BC, Dilley J, et al. (1995) Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab’)2 specific for the proliferating smooth muscle cells of human atheroma. Imaging with conventional and negative charge-modified antibody fragments. Circulation 92:474-84.

    CAS  Google Scholar 

  121. Zhang J, Krassilnikova S, Gharaei AA, Fassaei HR, Esmailzadeh L, Asadi A, et al. (2005) Alphavbeta3-targeted detection of arteriopathy in transplanted human coronary arteries: an autoradiographic study. Faseb J 19:1857-9.

    CAS  PubMed  Google Scholar 

  122. Isselbacher EM (2005) Thoracic and abdominal aortic aneurysms. Circulation 111:816-28.

    PubMed  Google Scholar 

  123. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625-32.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Dilsizian V (2008) 18F-FDG uptake as a surrogate marker for antecedent ischemia. J Nucl Med 49:1909-11.

    PubMed  Google Scholar 

  125. Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, et al. (2005) Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 112:2169-74.

    PubMed  Google Scholar 

  126. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268:17665-8.

    Google Scholar 

  127. Hosokawa R, Nohara R, Fujibayashi Y, Okuda K, Ogino M, Hata T, et al. (1997) Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemia and reperfusion: implications for clinical SPECT. J Nucl Med 38:1857-63.

    CAS  PubMed  Google Scholar 

  128. Khaw BA, Fallon FT, Strauss HW, Haber E (1980) Myocardial infarct imaging of antibodies to canine cardiac myosin with indium-111-diethylenetriamine pentaacetic acid. Science 209:295-7.

    CAS  PubMed  Google Scholar 

  129. Khaw BA, Gold HK, Yasuda T, Leinbach RC, Kanke M, Fallon JT, et al. (1986) Scintigraphic quantification of myocardial necrosis in patients after intravenous injection of myosin-specific antibody. Circulation 74:501-8.

    CAS  PubMed  Google Scholar 

  130. Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1992) Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381-5.

    CAS  PubMed  Google Scholar 

  131. Sarda-Mantel L, Hervatin F, Michel JB, Louedec L, Martet G, Rouzet F, et al. (2008) Myocardial uptake of 99mTc-annexin-V and 111In-antimyosin-antibodies after ischemia-reperfusion in rats. Eur J Nucl Med Mol Imaging 35:158-65.

    CAS  PubMed  Google Scholar 

  132. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, et al. (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54:718-24.

    PubMed  Google Scholar 

  133. Dumont EA, Reutelingsperger CP, Smits JF, Daemen MJ, Doevendans PA, Wellens HJ, et al. (2001) Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med 7:1352-5.

    CAS  PubMed  Google Scholar 

  134. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241-4.

    CAS  PubMed  Google Scholar 

  135. Liu Z, Zhao M, Zhu X, Furenlid LR, Chen YC, Barrett HH (2007) In vivo dynamic imaging of myocardial cell death using 99mTc-labeled C2A domain of synaptotagmin I in a rat model of ischemia and reperfusion. Nucl Med Biol 34:907-15.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Tillmanns J, Carlsen H, Blomhoff R, Valen G, Calvillo L, Ertl G, et al. (2006) Caught in the act: in vivo molecular imaging of the transcription factor NF-kappaB after myocardial infarction. Biochem Biophys Res Commun 342:773-4.

    CAS  PubMed  Google Scholar 

  137. Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E, et al. (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153-60.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, et al. (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290:H232-9.

    CAS  PubMed  Google Scholar 

  139. Rodriguez-Porcel M, Cai W, Gheysens O, Willmann JK, Chen K, Wang H, et al. (2008) Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 49:667-73.

    PubMed Central  PubMed  Google Scholar 

  140. Rodriguez E, Soler R (2008) New MR insights of cardiomyopathy. Eur J Radiol 67:392-400.

    PubMed  Google Scholar 

  141. Muzard J, Sarda-Mantel L, Loyau S, Meulemans A, Louedec L, Bantsimba-Malanda C, et al. (2009) Non-invasive molecular imaging of fibrosis using a collagen-targeted peptidomimetic of the platelet collagen receptor glycoprotein VI. PLoS One 4:e5585.

    PubMed Central  PubMed  Google Scholar 

  142. van den Borne SW, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, et al. (2008) Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 52:2017-28.

    PubMed  Google Scholar 

  143. Muszbek L, Yee VC, Hevessy Z (1999) Blood coagulation factor XIII: structure and function. Thromb Res 94:271-305.

    CAS  PubMed  Google Scholar 

  144. Nahrendorf M, Hu K, Frantz S, Jaffer FA, Tung CH, Hiller KH, et al. (2006) Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac remodeling in mice with myocardial infarction. Circulation 113:1196-202.

    CAS  PubMed  Google Scholar 

  145. Nahrendorf M, Aikawa E, Figueiredo JL, Stangenberg L, van den Borne SW, Blankesteijn WM, et al. (2008) Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. Eur Heart J 29:445-54.

    CAS  PubMed  Google Scholar 

  146. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413-23.

    CAS  PubMed  Google Scholar 

  147. Lijnen PJ, Petrov VV (2003) Role of intracardiac renin-angiotensin-aldosterone system in extracellular matrix remodeling. Methods Find Exp Clin Pharmacol 25:541-64.

    CAS  PubMed  Google Scholar 

  148. (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325:293-302.

    Google Scholar 

  149. St John Sutton M, Pfeffer MA, Plappert T, Rouleau JL, Moye LA, Dagenais GR, et al. (1994) Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89:68-75.

    CAS  Google Scholar 

  150. Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667-75.

    CAS  PubMed  Google Scholar 

  151. Pitt B (2009) Aldosterone blockade in patients with heart failure and a reduced left ventricular ejection fraction. Eur Heart J 30:387-8.

    PubMed  Google Scholar 

  152. Shirani J, Narula J, Eckelman WC, Narula N, Dilsizian V (2007) Early imaging in heart failure: exploring novel molecular targets. J Nucl Cardiol 14:100-10.

    PubMed  Google Scholar 

  153. Verjans JW, Lovhaug D, Narula N, Petrov AD, Indrevoll B, Bjurgert E, et al. (2008) Noninvasive imaging of angiotensin receptors after myocardial infarction. JACC Cardiovasc Imaging 1:354-62.

    PubMed Central  PubMed  Google Scholar 

  154. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ (2008) Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol 15:442-55.

    PubMed  Google Scholar 

  155. Tipre DN, Fox JJ, Holt DP, Green G, Yu J, Pomper M, et al. (2008) In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 49:1189-95.

    PubMed  Google Scholar 

  156. Frist W, Yasuda T, Segall G, Khaw BA, Strauss HW, Gold H, et al. (1987) Noninvasive detection of human cardiac transplant rejection with indium-111 antimyosin (Fab) imaging. Circulation 76:V81-5.

    CAS  PubMed  Google Scholar 

  157. Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, et al. (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7:1347-52.

    CAS  PubMed  Google Scholar 

  158. Wu YL, Ye Q, Foley LM, Hitchens TK, Sato K, Williams JB, et al. (2006) In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci U S A 103:1852-7.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Kanno S, Wu YJ, Lee PC, Dodd SJ, Williams M, Griffith BP, et al. (2001) Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104:934-8.

    CAS  PubMed  Google Scholar 

  160. Fuster V, Sanz J (2007) Gene therapy and stem cell therapy for cardiovascular diseases today: a model for translational research. Nat Clin Pract Cardiovasc Med 4 Suppl 1:S1-8.

    CAS  PubMed  Google Scholar 

  161. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134-9.

    PubMed  Google Scholar 

  162. Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, et al. (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512-8.

    CAS  PubMed  Google Scholar 

  163. Jin Y, Kong H, Stodilka RZ, Wells RG, Zabel P, Merrifield PA, et al. (2005) Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol 50:4445-55.

    PubMed  Google Scholar 

  164. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863-8.

    PubMed  Google Scholar 

  165. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198-202.

    PubMed  Google Scholar 

  166. Stuckey DJ, Carr CA, Martin-Rendon E, Tyler DJ, Willmott C, Cassidy PJ, et al. (2006) Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24:1968-75.

    CAS  PubMed  Google Scholar 

  167. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005-14.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health R01 HL85093, and a Department of Veterans Affairs Merit Award to MMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran M. Sadeghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marfatia, R., Tavakoli, S., Sadeghi, M.M. (2014). Applications of Molecular Small-Animal Imaging in Cardiology. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_20

Download citation

Publish with us

Policies and ethics