Skip to main content

Applications of Small-Animal Imaging in Neurology and Psychiatry

  • Chapter
  • First Online:
  • 1321 Accesses

Abstract

Next to genetical testing and behavioural observations, neuroimaging studies are increasingly performed on primates and rodents to model a variety of human diseases and traits. Animal models of brain disease are available for all major neurodegenerative diseases, epilepsy, stroke, but also psychiatric diseases such as anorexia nervosa, obesity, depression and anxiety [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lythgoe MF, Sibson NR, Harris NG (2003) Neuroimaging of animal models of brain disease. Br Med Bull 65:235-257.

    PubMed  Google Scholar 

  2. Hitzemann R (2000) Animal models of psychiatric disorders and their relevance to alcoholism. Alcohol Res Health 24:149-158.

    CAS  PubMed  Google Scholar 

  3. Burns HD, Van Laere K, Sanabria-Bohorquez S et al (2007) [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A 104:9800-9805.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Chitneni SK, Garreau L, Cleynhens B et al (2008) Improved synthesis and metabolic stability analysis of the dopamine transporter ligand [(18)F]FECT. Nucl Med Biol 35:75-82.

    CAS  PubMed  Google Scholar 

  5. Birchfield NB and Casida JE (1996) Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria. Chem Res Toxicol 9:1135-1139.

    CAS  PubMed  Google Scholar 

  6. Wienhard K (2002) Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods 27:218-225.

    CAS  PubMed  Google Scholar 

  7. Myers R and Hume S (2002) Small animal PET. Eur Neuropsychopharmacol 12:545-555.

    CAS  PubMed  Google Scholar 

  8. Vastenhouw B and Beekman F (2007) Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 48:487-493.

    PubMed  Google Scholar 

  9. van der Have F, Vastenhouw B, Ramakers RM et al (2009) U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging. J Nucl Med 50:599-605.

    PubMed  Google Scholar 

  10. Massoud TF and Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545-580.

    CAS  PubMed  Google Scholar 

  11. Tsukada H (1999) Delivery of radioligands for positron emission tomography (PET) in the central nervous system. Adv Drug Deliv Rev 37:175-188.

    CAS  PubMed  Google Scholar 

  12. Vaska P, Woody CL, Schlyer DJ et al (2004) RatCAP: miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci 51:2718-2722.

    Google Scholar 

  13. Votaw J, Byas-Smith M, Hua J et al (2003) Interaction of isoflurane with the dopamine transporter. Anesthesiology 98:404-411.

    CAS  PubMed  Google Scholar 

  14. Matsumura A, Mizokawa S, Tanaka M et al (2003) Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20:2040-2050.

    PubMed  Google Scholar 

  15. Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widen L (1991) Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 11:926-931.

    CAS  PubMed  Google Scholar 

  16. Laforest R, Sharp TL, Engelbach JA et al (2005) Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 32:679-685.

    CAS  PubMed  Google Scholar 

  17. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279-287.

    CAS  PubMed  Google Scholar 

  18. Wu HM, Huang SC, Allada V et al (1996) Derivation of input function from FDG-PET studies in small hearts. J Nucl Med 37:1717-1722.

    CAS  PubMed  Google Scholar 

  19. Pain F, Laniece P, Mastrippolito R et al (2004) Arterial input function measurement without blood sampling using a beta-microprobe in rats. J Nucl Med 45:1577-1582.

    PubMed  Google Scholar 

  20. Sossi V and Ruth TJ (2005) Micropet imaging: in vivo biochemistry in small animals. J Neural Transm 112:319-330.

    CAS  PubMed  Google Scholar 

  21. Jagoda EM, Vaquero JJ, Seidel J, Green MV, Eckelman WC (2004) Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol 31:771-779.

    CAS  PubMed  Google Scholar 

  22. Casteels C, Vermaelen P, Nuyts J et al (2006) Construction and Evaluation of Multitracer Small-Animal PET Probabilistic Atlases for Voxel-Based Functional Mapping of the Rat Brain. J Nucl Med 47:1858-1866.

    PubMed  Google Scholar 

  23. Rubins DJ, Melega WP, Lacan G et al (2003) Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage 20:2100-2118.

    PubMed  Google Scholar 

  24. Kesner AL, Dahlbom M, Huang SC et al (2006) Semiautomated analysis of small-animal PET data. J Nucl Med 47:1181-1186.

    PubMed  Google Scholar 

  25. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6:149-159.

    PubMed  Google Scholar 

  26. Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577-587.

    PubMed Central  PubMed  Google Scholar 

  27. Taschereau R, Chow PL, Chatziioannou AF (2006) Monte carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33:216-224.

    PubMed Central  PubMed  Google Scholar 

  28. Stabin MG, Peterson TE, Holburn GE, Emmons MA (2006) Voxel-based mouse and rat models for internal dose calculations. J Nucl Med 47:655-659.

    PubMed  Google Scholar 

  29. Wu L, Zhang G, Luo Q, Liu Q (2008) An image-based rat model for Monte Carlo organ dose calculations. Med Phys 35:3759-3764.

    PubMed  Google Scholar 

  30. Zaidi H and Xu XG (2007) Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng 9:471-500.

    CAS  PubMed  Google Scholar 

  31. Zaidi H and Tsui BMW (2009) Review of anthropomorphic computational anatomical and physiological models. Proceedings of the IEEE 97:1938-53.

    Google Scholar 

  32. Beekman F, Vastenhouw B, vander Wilt G et al (2009) 3D rat phantom for ultra-high resolution molecular imaging. Proceedings of the IEEE 97:1997-2005.

    Google Scholar 

  33. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783-1793.

    CAS  PubMed  Google Scholar 

  34. Fearnley JM and Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114 (Pt 5):2283-2301.

    PubMed  Google Scholar 

  35. Hantraye P (1998) Modeling dopamine system dysfunction in experimental animals. Nucl Med Biol 25:721-728.

    CAS  PubMed  Google Scholar 

  36. Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66:S10-S23.

    PubMed  Google Scholar 

  37. Recchia A, Debetto P, Negro A et al (2004) Alpha-synuclein and Parkinson’s disease. FASEB J 18:617-626.

    CAS  PubMed  Google Scholar 

  38. Jenner P (2008) Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 64 Suppl 2:S16-S29.

    CAS  PubMed  Google Scholar 

  39. Doudet DJ, Chan GL, Holden JE et al (1998) 6-[18F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse 29:225-232.

    CAS  PubMed  Google Scholar 

  40. Yee RE, Irwin I, Milonas C et al (2001) Novel observations with FDOPA-PET imaging after early nigrostriatal damage. Mov Disord 16:838-848.

    CAS  PubMed  Google Scholar 

  41. Melega WP, Raleigh MJ, Stout DB et al (1996) Longitudinal behavioral and 6-[18F]fluoro-L-DOPA-PET assessment in MPTP-hemiparkinsonian monkeys. Exp Neurol 141:318-329.

    CAS  PubMed  Google Scholar 

  42. Doudet DJ, Wyatt RJ, Cannon-Spoor E et al (1993) 6-[18F]fluoro-L-dopa and cerebral blood flow in unilaterally MPTP-treated monkeys. J Neural Transplant Plast 4:27-38.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Eberling JL, Bankiewicz KS, Jordan S, VanBrocklin HF, Jagust WJ (1997) PET studies of functional compensation in a primate model of Parkinson’s disease. Neuroreport 8:2727-2733.

    CAS  PubMed  Google Scholar 

  44. Eberling JL, Pivirotto P, Bringas J, Bankiewicz KS (2000) Tremor is associated with PET measures of nigrostriatal dopamine function in MPTP-lesioned monkeys. Exp Neurol 165:342-346.

    CAS  PubMed  Google Scholar 

  45. Hume SP, Lammertsma AA, Myers R et al (1996) The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods 67:103-112.

    CAS  PubMed  Google Scholar 

  46. Sharma SK and Ebadi M (2005) Distribution kinetics of 18F-DOPA in weaver mutant mice. Brain Res Mol Brain Res 139:23-30.

    CAS  PubMed  Google Scholar 

  47. Sharma SK, El Refaey H, Ebadi M (2006) Complex-1 activity and 18F-DOPA uptake in genetically engineered mouse model of Parkinson’s disease and the neuroprotective role of coenzyme Q10. Brain Res Bull 70:22-32.

    CAS  PubMed  Google Scholar 

  48. Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the integrity of the dopamine system in a rodent model of Parkinson’s disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 8:292-299.

    PubMed  Google Scholar 

  49. Sossi V, Holden JE, Topping GJ et al (2007) In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab 27:1407-1415.

    CAS  PubMed  Google Scholar 

  50. Nguyen TV, Brownell AL, Iris Chen YC et al (2000) Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 36:57-65.

    CAS  PubMed  Google Scholar 

  51. Hume SP, Myers R, Bloomfield PM et al (1992) Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 12:47-54.

    CAS  PubMed  Google Scholar 

  52. Kaasinen V, Ruottinen HM, Nagren K et al (2000) Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med 41:65-70.

    CAS  PubMed  Google Scholar 

  53. Nikolaus S, Larisch R, Beu M et al (2003) Bilateral increase in striatal dopamine D2 receptor density in the 6-hydroxydopamine-lesioned rat: a serial in vivo investigation with small animal PET. Eur J Nucl Med Mol Imaging 30:390-395.

    CAS  PubMed  Google Scholar 

  54. Casteels C, Lauwers E, Bormans G, Baekelandt V, Van Laere K (2007) Metabolic-dopaminergic mapping of the 6-hydroxydopamine rat model for Parkinson’s disease. Eur J Nucl Med Mol Imaging

    Google Scholar 

  55. Lauwers E, Beque D, Van Laere K et al (2007) Non-invasive imaging of neuropathology in a rat model of alpha-synuclein overexpression. Neurobiol Aging 28:248-257.

    CAS  PubMed  Google Scholar 

  56. Inaji M, Okauchi T, Ando K et al (2005) Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats. Brain Res 1064:136-145.

    CAS  PubMed  Google Scholar 

  57. Chen YI, Brownell AL, Galpern W et al (1999) Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. Neuroreport 10:2881-2886.

    CAS  PubMed  Google Scholar 

  58. Brownell AL, Livni E, Galpern W, Isacson O (1998) In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants. Ann Neurol 43:387-390.

    CAS  PubMed  Google Scholar 

  59. Doudet DJ, Cornfeldt ML, Honey CR, Schweikert AW, Allen RC (2004) PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson’s disease. Exp Neurol 189:361-368.

    CAS  PubMed  Google Scholar 

  60. Bjorklund LM, Sanchez-Pernaute R, Chung S et al (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344-2349.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Opacka-Juffry J, Ashworth S, Hume SP et al (1995) GDNF protects against 6-OHDA nigrostriatal lesion: in vivo study with microdialysis and PET. Neuroreport 7:348-352.

    CAS  PubMed  Google Scholar 

  62. Sullivan AM, Opacka-Juffry J, Blunt SB (1998) Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 10:57-63.

    CAS  PubMed  Google Scholar 

  63. Olanow CW, Goetz CG, Kordower JH et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403-414.

    PubMed  Google Scholar 

  64. Freed CR, Greene PE, Breeze RE et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710-719.

    CAS  PubMed  Google Scholar 

  65. Minghetti L and Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99-125.

    CAS  PubMed  Google Scholar 

  66. Ullrich O, Diestel A, Eyupoglu IY, Nitsch R (2001) Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol 3:1035-1042.

    CAS  PubMed  Google Scholar 

  67. Cicchetti F, Brownell AL, Williams K et al (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991-998.

    CAS  PubMed  Google Scholar 

  68. Sanchez-Pernaute R, Ferree A, Cooper O et al (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6-

    Google Scholar 

  69. Palombo E, Porrino LJ, Bankiewicz KS et al (1988) Administration of MPTP acutely increases glucose utilization in the substantia nigra of primates. Brain Res 453:227-234.

    CAS  PubMed  Google Scholar 

  70. Porrino LJ, Burns RS, Crane AM et al (1987) Changes in local cerebral glucose utilization associated with Parkinson’s syndrome induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the primate. Life Sci 40:1657-1664.

    CAS  PubMed  Google Scholar 

  71. Wooten GF and Collins RC (1983) Effects of dopaminergic stimulation on functional brain metabolism in rats with unilateral substantia nigra lesions. Brain Res 263:267-275.

    CAS  PubMed  Google Scholar 

  72. Kuhl DE, Metter EJ, Riege WH (1984) Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F]fluorodeoxyglucose method. Ann Neurol 15:419-424.

    CAS  PubMed  Google Scholar 

  73. Lozza C, Baron JC, Eidelberg D et al (2004) Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 22:236-245.

    PubMed  Google Scholar 

  74. Walker FO (2007) Huntington’s disease. Lancet 369:218-228.

    CAS  PubMed  Google Scholar 

  75. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971-983.

    Google Scholar 

  76. Wexler NS, Lorimer J, Porter J et al (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101:3498-3503.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Coyle JT and Schwarcz R (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263:244-246.

    CAS  PubMed  Google Scholar 

  78. Beal MF, Kowall NW, Ellison DW et al (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168-171.

    CAS  PubMed  Google Scholar 

  79. Borlongan CV, Koutouzis TK, Sanberg PR (1997) 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev 21:289-293.

    CAS  PubMed  Google Scholar 

  80. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493-506.

    CAS  PubMed  Google Scholar 

  81. Marsh JL, Pallos J, Thompson LM (2003) Fly models of Huntington’s disease. Hum Mol Genet 12 Spec No 2:R187-R193.

    Google Scholar 

  82. von Horsten S, Schmitt I, Nguyen HP et al (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617-624.

    Google Scholar 

  83. Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 166:287-297.

    CAS  PubMed  Google Scholar 

  84. Ishiwata K, Ogi N, Hayakawa N et al (2002) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Ann Nucl Med 16:467-475.

    CAS  PubMed  Google Scholar 

  85. Ishiwata K, Ogi N, Hayakawa N et al (2002) Positron emission tomography and ex vivo and in vitro autoradiography studies on dopamine D2-like receptor degeneration in the quinolinic acid-lesioned rat striatum: comparison of [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone. Nucl Med Biol 29:307-316.

    CAS  PubMed  Google Scholar 

  86. Moresco RM, Lavazza T, Belloli S et al (2008) Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation. Eur J Nucl Med Mol Imaging 35:704-715.

    CAS  PubMed  Google Scholar 

  87. Brownell AL, Chen YI, Yu M et al (2004) 3-Nitropropionic acid-induced neurotoxicit--ssessed by ultra high resolution positron emission tomography with comparison to magnetic resonance spectroscopy. J Neurochem 89:1206-1214.

    CAS  PubMed  Google Scholar 

  88. Wang X, Sarkar A, Cicchetti F et al (2005) Cerebral PET imaging and histological evidence of transglutaminase inhibitor cystamine induced neuroprotection in transgenic R6/2 mouse model of Huntington’s disease. J Neurol Sci 231:57-66.

    CAS  PubMed  Google Scholar 

  89. Fratiglioni L, De Ronchi D, Guero-Torres H (1999) Worldwide prevalence and incidence of dementia. Drugs Aging 15:365-375.

    CAS  PubMed  Google Scholar 

  90. Jellinger KA (2008) Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis 5:118-121.

    CAS  PubMed  Google Scholar 

  91. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789-791.

    CAS  PubMed  Google Scholar 

  92. Williamson J, Goldman J, Marder KS (2009) Genetic aspects of Alzheimer disease. Neurologist 15:80-86.

    PubMed Central  PubMed  Google Scholar 

  93. Spillantini MG, Murrell JR, Goedert M et al (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95:7737-7741.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gotz J, Deters N, Doldissen A et al (2007) A decade of tau transgenic animal models and beyond. Brain Pathol 17:91-103.

    CAS  PubMed  Google Scholar 

  95. Gotz J and Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532-544.

    PubMed  Google Scholar 

  96. Levin CS and Zaidi H (2007) Current trends in preclinical PET system design. PET Clinics 2:125-160.

    Google Scholar 

  97. Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80 Spec No 2:S160-S167.

    Google Scholar 

  98. Valla J, Chen K, Berndt JD et al (2002) Effects of image resolution on autoradiographic measurements of posterior cingulate activity in PDAPP mice: implications for functional brain imaging studies of transgenic mouse models of Alzheimer’s Disease. Neuroimage 16:1-6.

    CAS  PubMed  Google Scholar 

  99. Skovronsky DM, Zhang B, Kung MP et al (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 97:7609-7614.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306-319.

    CAS  PubMed  Google Scholar 

  101. Bacskai BJ, Hickey GA, Skoch J et al (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A 100:12462-12467.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Klunk WE, Lopresti BJ, Ikonomovic MD et al (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598-10606.

    CAS  PubMed  Google Scholar 

  103. Maeda J, Ji B, Irie T et al (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957-10968.

    CAS  PubMed  Google Scholar 

  104. Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343-1354.

    CAS  PubMed  Google Scholar 

  105. Fisher RS, Van Emde BW, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470-472.

    PubMed  Google Scholar 

  106. Hauser WA and Kurland LT (1975) The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 16:1-66.

    CAS  PubMed  Google Scholar 

  107. Gram L (1990) Epileptic seizures and syndromes. Lancet 336:161-163.

    CAS  PubMed  Google Scholar 

  108. The Commission on Classification and Terminology of the International League Against Epilepsy (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22:489-501.

    Google Scholar 

  109. Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (1972) Experimental Models of Epilepsy - A Manual for the Laboratory Worker. New York, Raven

    Google Scholar 

  110. Kornblum HI, Araujo DM, Annala AJ et al (2000) In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 18:655-660.

    CAS  PubMed  Google Scholar 

  111. Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W (2008) Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 38:227-239.

    PubMed  Google Scholar 

  112. Mirrione MM, Schiffer WK, Siddiq M, Dewey SL, Tsirka SE (2006) PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy. Synapse 59:119-121.

    CAS  PubMed  Google Scholar 

  113. Wang D, Pascual JM, Yang H et al (2006) A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet 15:1169-1179.

    CAS  PubMed  Google Scholar 

  114. Dick AP, Harik SI, Klip A, Walker DM (1984) Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci U S A 81:7233-7237.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Jupp B, Williams J, Binns D, Hicks R, O’Brien T (2007) Imaging small animal models of epileptogenesis. Neurology Asia 12 (supplement 1):51-54.

    Google Scholar 

  116. Goffin K, Van Paesschen W, Dupont P, Van Laere K (2009) Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy. Exp Neurol

    Google Scholar 

  117. Liefaard LC, Ploeger BA, Molthoff CF et al (2009) Changes in GABAA receptor properties in amygdala kindled animals: in vivo studies using [11C]flumazenil and positron emission tomography. Epilepsia 50:88-98.

    CAS  PubMed  Google Scholar 

  118. Di Marzo V, Melck D, Bisogno T, De Petrocellis L (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21:521-528.

    PubMed  Google Scholar 

  119. Marsicano G, Goodenough S, Monory K et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84-88.

    CAS  PubMed  Google Scholar 

  120. Wallace MJ, Wiley JL, Martin BR, Delorenzo RJ (2001) Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 428:51-57.

    CAS  PubMed  Google Scholar 

  121. Wallace MJ, Martin BR, Delorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452:295-301.

    CAS  PubMed  Google Scholar 

  122. Wallace MJ, Blair RE, Falenski KW, Martin BR, Delorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307:129-137.

    CAS  PubMed  Google Scholar 

  123. Goffin K, Bormans G, Casteels C et al (2008) An in vivo [(18)F]MK-9470 microPET study of type 1 cannabinoid receptor binding in Wistar rats after chronic administration of valproate and levetiracetam. Neuropharmacology

    Google Scholar 

  124. Murray CJ and Lopez AD (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349:1269-1276.

    CAS  PubMed  Google Scholar 

  125. Paciaroni M, Caso V, Agnelli G (2009) The Concept of Ischemic Penumbra in Acute Stroke and Therapeutic Opportunities. Eur Neurol 61:321-330.

    PubMed  Google Scholar 

  126. Seshadri S and Wolf PA (2007) Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol 6:1106-1114.

    PubMed  Google Scholar 

  127. Wiebers DO, Adams HP, Jr., Whisnant JP (1990) Animal models of stroke: are they relevant to human disease? Stroke 21:1-3.

    CAS  PubMed  Google Scholar 

  128. Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2:396-409.

    PubMed Central  PubMed  Google Scholar 

  129. McBean DE and Kelly PA (1998) Rodent models of global cerebral ischemia: a comparison of two-vessel occlusion and four-vessel occlusion. Gen Pharmacol 30:431-434.

    CAS  PubMed  Google Scholar 

  130. Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20:1276-1293.

    CAS  PubMed  Google Scholar 

  131. Temma T, Kuge Y, Sano K et al (2008) PET O-15 cerebral blood flow and metabolism after acute stroke in spontaneously hypertensive rats. Brain Res 1212:18-24.

    CAS  PubMed  Google Scholar 

  132. Temma T (2008) In-vivo positron emission tomography (PET) measurement of cerebral oxygen metabolism in small animals. Yakugaku Zasshi 128:1267-1273.

    CAS  PubMed  Google Scholar 

  133. Cai W, Guzman R, Hsu AR et al (2009) Positron emission tomography imaging of poststroke angiogenesis. Stroke 40:270-277.

    PubMed  Google Scholar 

  134. Takasawa M, Beech JS, Fryer TD et al (2007) Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using 18F-fluoromisonidazole and positron emission tomography: a pilot study. J Cereb Blood Flow Metab 27:679-689.

    PubMed  Google Scholar 

  135. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22:265-280.

    CAS  PubMed  Google Scholar 

  136. Miller GG, Ngan-Lee J, Chapman JD (1982) Intracellular localization of radioactively labeled misonidazole in EMT-6-tumor cells in vitro. Int J Radiat Oncol Biol Phys 8:741-744.

    CAS  PubMed  Google Scholar 

  137. Reshef A, Shirvan A, Waterhouse RN et al (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520-1528.

    CAS  PubMed  Google Scholar 

  138. Mattson MP, Duan W, Pedersen WA, Culmsee C (2001) Neurodegenerative disorders and ischemic brain diseases. Apoptosis 6:69-81.

    CAS  PubMed  Google Scholar 

  139. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794-1798.

    CAS  PubMed  Google Scholar 

  140. Blankenberg FG, Kalinyak J, Liu L et al (2006) 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody. Eur J Nucl Med Mol Imaging 33:566-574.

    CAS  PubMed  Google Scholar 

  141. French LE and Tschopp J (2003) Protein-based therapeutic approaches targeting death receptors. Cell Death Differ 10:117-123.

    CAS  PubMed  Google Scholar 

  142. Martin-Villalba A, Hahne M, Kleber S et al (2001) Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ 8:679-686.

    CAS  PubMed  Google Scholar 

  143. Wang X, Zhu S, Drozda M et al (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci U S A 100:10483-10487.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Tang XN, Wang Q, Koike MA et al (2007) Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia. J Nucl Med 48:1822-1828.

    CAS  PubMed  Google Scholar 

  145. Flint J and Shifman S (2008) Animal models of psychiatric disease. Curr Opin Genet Dev 18:235-240.

    CAS  PubMed  Google Scholar 

  146. Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615-620.

    CAS  PubMed  Google Scholar 

  147. Everitt BJ, Hutcheson DM, Ersche KD et al (2007) The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann N Y Acad Sci 1121:576-597.

    CAS  PubMed  Google Scholar 

  148. Hester R and Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 24:11017-11022.

    CAS  PubMed  Google Scholar 

  149. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78:610-624.

    CAS  PubMed  Google Scholar 

  150. Adams JB, Heath AJ, Young SE et al (2003) Relationships between personality and preferred substance and motivations for use among adolescent substance abusers. Am J Drug Alcohol Abuse 29:691-712.

    PubMed  Google Scholar 

  151. Dawe S and Loxton NJ (2004) The role of impulsivity in the development of substance use and eating disorders. Neurosci Biobehav Rev 28:343-351.

    PubMed  Google Scholar 

  152. Levin FR and Kleber HD (1995) Attention-deficit hyperactivity disorder and substance abuse: relationships and implications for treatment. Harv Rev Psychiatry 2:246-258.

    CAS  PubMed  Google Scholar 

  153. Dalley JW, Fryer TD, Brichard L et al (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267-1270.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Crabbe JC and Cunningham CL (2007) Trait or state? Science 317:1033-1035.

    CAS  PubMed  Google Scholar 

  155. Uhl G (2007) Premature poking: impulsivity, cocaine and dopamine. Nat Med 13:413-414.

    CAS  PubMed  Google Scholar 

  156. Morgan D, Grant KA, Gage HD et al (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169-174.

    CAS  PubMed  Google Scholar 

  157. Nader MA, Morgan D, Gage HD et al (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9:1050-1056.

    CAS  PubMed  Google Scholar 

  158. Dalley JW, Fryer TD, Aigbirhio FI et al (2009) Modelling human drug abuse and addiction with dedicated small animal positron emission tomography. Neuropharmacology 56 Suppl 1:9-17.

    CAS  PubMed  Google Scholar 

  159. Lopez AD and Murray CC (1998) The global burden of disease, 1990-2020. Nat Med 4:1241-1243.

    CAS  PubMed  Google Scholar 

  160. Hietala J, Syvalahti E, Vilkman H et al (1999) Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35:41-50.

    CAS  PubMed  Google Scholar 

  161. McGowan S, Lawrence AD, Sales T, Quested D, Grasby P (2004) Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatry 61:134-142.

    PubMed  Google Scholar 

  162. Laruelle M, Bi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56-72.

    CAS  PubMed  Google Scholar 

  163. Breier A, Su TP, Saunders R et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569-2574.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci U S A 72:4376-4380.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Mukherjee J, Christian BT, Narayanan TK, Shi B, Mantil J (2001) Evaluation of dopamine D-2 receptor occupancy by clozapine, risperidone, and haloperidol in vivo in the rodent and nonhuman primate brain using 18F-fallypride. Neuropsychopharmacology 25:476-488.

    CAS  PubMed  Google Scholar 

  166. Okubo Y, Suhara T, Suzuki K et al (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634-636.

    CAS  PubMed  Google Scholar 

  167. Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159:761-767.

    PubMed  Google Scholar 

  168. Bi-Dargham A, Mawlawi O, Lombardo I et al (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708-3719.

    Google Scholar 

  169. Guo N, Hwang DR, Lo ES et al (2003) Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia. Neuropsychopharmacology 28:1703-1711.

    CAS  PubMed  Google Scholar 

  170. Arango V, Underwood MD, Mann JJ (2002) Serotonin brain circuits involved in major depression and suicide. Prog Brain Res 136:443-453.

    CAS  PubMed  Google Scholar 

  171. Doris A, Ebmeier K, Shajahan P (1999) Depressive illness. Lancet 354:1369-1375.

    CAS  PubMed  Google Scholar 

  172. Neumeister A, Nugent AC, Waldeck T et al (2004) Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 61:765-773.

    CAS  PubMed  Google Scholar 

  173. Drevets WC, Thase ME, Moses-Kolko EL et al (2007) Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 34:865-877.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Mathis CA, Simpson NR, Mahmood K, Kinahan PE, Mintun MA (1994) [11C]WAY 100635: a radioligand for imaging 5-HT1A receptors with positron emission tomography. Life Sci 55:L403-L407.

    Google Scholar 

  175. Aznavour N, Benkelfat C, Gravel P et al (2009) MicroPET imaging of 5-HT 1A receptors in rat brain: a test-retest [18F]MPPF study. Eur J Nucl Med Mol Imaging 36:53-62.

    CAS  PubMed  Google Scholar 

  176. Goodwin R and Jamison KR (1990) Manic-depressive illness. Oxford University Press, New York

    Google Scholar 

  177. Hougland MT, Gao Y, Herman L et al (2008) Positron emission tomography with fluorodeoxyglucose-F18 in an animal model of mania. Psychiatry Res 164:166-171.

    PubMed  Google Scholar 

  178. Baxter LR, Jr., Phelps ME, Mazziotta JC et al (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42:441-447.

    PubMed  Google Scholar 

  179. Al-Mousawi AH, Evans N, Ebmeier KP et al (1996) Limbic dysfunction in schizophrenia and mania. A study using 18F-labelled fluorodeoxyglucose and positron emission tomography. Br J Psychiatry 169:509-516.

    CAS  PubMed  Google Scholar 

  180. Sigel E (2008) Eating disorders. Adolesc Med State Art Rev 19:547-72, xi.

    Google Scholar 

  181. Bailer UF, Frank GK, Henry SE et al (2005) Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635. Arch Gen Psychiatry 62:1032-1041.

    CAS  PubMed  Google Scholar 

  182. Delvenne V, Lotstra F, Goldman S et al (1995) Brain hypometabolism of glucose in anorexia nervosa: a PET scan study. Biol Psychiatry 37:161-169.

    CAS  PubMed  Google Scholar 

  183. Barbarich-Marsteller NC, Marsteller DA, Alexoff DL, Fowler JS, Dewey SL (2005) MicroPET imaging in an animal model of anorexia nervosa. Synapse 57:85-90.

    CAS  PubMed  Google Scholar 

  184. Casper RC, Sullivan EL, Tecott L (2008) Relevance of animal models to human eating disorders and obesity. Psychopharmacology (Berl) 199:313-329.

    CAS  Google Scholar 

  185. Van Kuyck K, Casteels C, Vermaelen P et al (2007) Motor- and food-related metabolic cerebral changes in the activity-based rat model for anorexia nervosa: A voxel-based microPET study. Neuroimage 35:214-221.

    PubMed  Google Scholar 

  186. Tokunaga M, Ida I, Higuchi T, Mikuni M (1997) Alterations of benzodiazepine receptor binding potential in anxiety and somatoform disorders measured by 123I-iomazenil SPECT. Radiat Med 15:163-169.

    CAS  PubMed  Google Scholar 

  187. Kaschka W, Feistel H, Ebert D (1995) Reduced benzodiazepine receptor binding in panic disorders measured by iomazenil SPECT. J Psychiatr Res 29:427-434.

    CAS  PubMed  Google Scholar 

  188. Geuze E, van Berckel BN, Lammertsma AA et al (2008) Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol Psychiatry 13:74-83, 3.

    Google Scholar 

  189. McGuire P, Howes OD, Stone J, Fusar-Poli P (2008) Functional neuroimaging in schizophrenia: diagnosis and drug discovery. Trends Pharmacol Sci 29:91-98.

    CAS  PubMed  Google Scholar 

  190. Rosenberg DR, Mirza Y, Russell A et al (2004) Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry 43:1146-1153.

    PubMed  Google Scholar 

  191. Dedeurwaerdere S, Gregoire MC, Vivash L et al (2009) In-vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat. Eur J Nucl Med Mol Imaging

    Google Scholar 

  192. Shetty HU, Zoghbi SS, Simeon FG et al (2008) Radiodefluorination of 3-fluoro-5-(2-(2-[18F](fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther 327:727-735.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

CC is a Postdoctoral Researcher for the Research Council of the Katholieke Universiteit Leuven, Belgium; KVL is Senior Clinical Researcher for the Fund for Scientific Research Flanders (FWO), Belgium. This work was funded in part by the European Community FP7-Network-of-Excellence INMiND (grant agreement no. 278850). HZ knowledge support provided by the Swiss National Science Foundation under grant SNSF 31003A-125246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Casteels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Casteels, C., Zaidi, H., Van Laere, K. (2014). Applications of Small-Animal Imaging in Neurology and Psychiatry. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_19

Download citation

Publish with us

Policies and ethics