Skip to main content

Quantification of Small-Animal Imaging Data

  • Chapter
  • First Online:
Molecular Imaging of Small Animals

Abstract

The field of molecular imaging finds its roots in nuclear medicine, which since its inception had a major focus on task-based optimization of image quality, and on in vivo quantitative assessment of metabolic and physiological parameters [1]. This standpoint reflects the limited spatial resolution and high noise characteristics of SPECT and PET compared to high resolution structural imaging modalities (CT and MRI), which provide exquisite anatomical details. The disparities between performance characteristics of currently available scanners and their potential degradation with time can be delicate and tricky to put into evidence through qualitative visual interpretation. This has motivated the development of objective and reproducible metrics to observe and adjust changes in system performance, for intercomparison studies as well as for quality assurance and quality control tasks. The use of molecular imaging in the assessment of metabolic and physiological parameters linked to specific diseases further motivated quantitative molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Zaidi (2006) Ed., Quantitative analysis in nuclear medicine imaging (Springer, New York).

    Google Scholar 

  2. P. D. Acton, H. Zhuang, A. Alavi (2004) Quantification in PET. Radiol Clin North Am 42: 1055–1062

    Article  PubMed  Google Scholar 

  3. C. S. Levin, H. Zaidi (2007) Current trends in preclinical PET system design. PET Clinics 2: 125–160

    Article  Google Scholar 

  4. M. A. Bahri, A. Plenevaux, G. Warnock, A. Luxen, A. Seret (2009) NEMA NU4-2008 image quality performance report for the microPET Focus 120 and for various transmission and reconstruction methods. J Nucl Med 50: 1730–1738

    Article  PubMed  Google Scholar 

  5. H. Zaidi, M.-L. Montandon, S. Meikle (2007) Strategies for attenuation compensation in neurological PET studies. Neuroimage 34: 518–541

    Article  PubMed  Google Scholar 

  6. J. Qi, R. M. Leahy (2006) Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 51: R541–R578

    Article  PubMed  Google Scholar 

  7. A. J. Reader, H. Zaidi (2007) Advances in PET image reconstruction. PET Clinics 2: 173–190

    Article  Google Scholar 

  8. A. Rahmim, J. Tang, H. Zaidi (2009) Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 36: 3654–3670

    Article  PubMed  Google Scholar 

  9. R. M. Lewitt, S. Matej (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proceedings of the IEEE 91: 1588–1611

    Google Scholar 

  10. H. H. Barrett, K. Myers (2003) Foundations of Image Science John Wiley & Sons, Hoboken, New Jersey.

    Google Scholar 

  11. D. C. Solman (1976) The x-ray transform. J Math Anal Appl 56: 61-83

    Article  Google Scholar 

  12. F. Natterer (1986) The mathematics of computerized tomography. Wiley, New York.

    Google Scholar 

  13. K. E. Kuhl, R. Q. Edwards (1963) Image separation radioisotope scanning. Radiology 80: 653–661

    Google Scholar 

  14. G. Chu, K.-C. Tam (1977) Three-dimensional imaging in the positron camera using Fourier techniques. Phys Med Biol 22: 245–265

    Article  CAS  PubMed  Google Scholar 

  15. P. E. Kinahan, J. G. Rogers (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36: 964–968

    Article  CAS  Google Scholar 

  16. M. Defrise, P. E. Kinahan, D. W. Townsend, et al. (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16: 145–158

    Article  CAS  PubMed  Google Scholar 

  17. L. A. Shepp, Y. Vardi (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1: 113–122

    Article  CAS  PubMed  Google Scholar 

  18. H. Zaidi, B. H. Hasegawa (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44: 291–315

    PubMed  Google Scholar 

  19. B. Hutton, J. Nuyts, H. Zaidi: Iterative image reconstruction methods. In Quantitative analysis in nuclear medicine imaging. H. Zaidi, Ed. Springer, New York, 2006. 107–140

    Chapter  Google Scholar 

  20. H. M. Hudson, R. S. Larkin (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13: 601–609

    Article  CAS  PubMed  Google Scholar 

  21. S. Geman, D. E. McClure (1987) Statistical methods for tomographic image reconstruction. Bull Int Stat Inst 52–4: 5–21

    Google Scholar 

  22. J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, T. H. Farquhar (1998) High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys. Med. Biol. 43: 1001–1013

    Article  CAS  PubMed  Google Scholar 

  23. S. Sastry, R. E. Carson (1997) Multimodality Bayesian algorithm for image reconstruction in positron emission tomography: a tissue composition model. IEEE Trans Med Imaging 16: 750–761

    Article  CAS  PubMed  Google Scholar 

  24. K. Baete, J. Nuyts, W. Van Paesschen, P. Suetens, P. Dupont (2004) Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy. IEEE Trans Med Imaging 23: 510–519

    Article  PubMed  Google Scholar 

  25. A. Rahmim, J. Qi, V. Sossi (2013) Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls. Med Phys 40: 064301–15

    Article  PubMed Central  PubMed  Google Scholar 

  26. S. Moehrs, M. Defrise, N. Belcari, et al. (2008) Multi-ray-based system matrix generation for 3D PET reconstruction. Phys Med Biol 53: 6925–6945

    Article  PubMed  Google Scholar 

  27. M. Rafecas, B. Mosler, M. Dietz, et al. (2004) Use of a Monte Carlo-based probability matrix for 3-D iterative reconstruction of MADPET-II data. IEEE Trans Nucl Sci 51: 2597–2605

    Article  Google Scholar 

  28. V. Y. Panin, F. Kehren, C. Michel, M. Casey (2006) Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 25: 907–921

    Article  PubMed  Google Scholar 

  29. M. S. Tohme, J. Qi (2009) Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements. Phys Med Biol 54: 3709–3725

    Article  PubMed Central  PubMed  Google Scholar 

  30. A. M. Alessio, C. W. Stearns, S. Tong, et al. (2010) Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging 29: 938–949

    Article  PubMed Central  PubMed  Google Scholar 

  31. F. A. Kotasidis, J. C. Matthews, G. I. Angelis, et al. (2011) Single scan parameterization of space-variant point spread functions in image space via a printed array: the impact for two PET/CT scanners. Phys Med Biol 56: 2917–2942

    Article  CAS  PubMed  Google Scholar 

  32. J. Zhou, J. Qi (2011) Fast and efficient fully 3D PET image reconstruction using sparse system matrix factorization with GPU acceleration. Phys Med Biol 56: 6739–6757

    Article  PubMed  Google Scholar 

  33. R. E. Carson, K. Lange (1985) The EM parametric image reconstruction algorithm. J Am Statist Assoc 80: 20–22

    Google Scholar 

  34. S. Weber, A. Bauer (2004) Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 31: 1545–1555

    Article  PubMed  Google Scholar 

  35. Y. Yang, S. R. Cherry (2006) Observations regarding scatter fraction and NEC measurements for small animal PET. IEEE Trans Nucl Sci 53: 127–132

    Article  Google Scholar 

  36. S. I. Ziegler, W. K. Kuebler (1993) Monte Carlo simulation of the scatter component in small animal positron volume-imaging devices. Z Med Phys 3: 83–87

    Google Scholar 

  37. M. Rafecas, G. Boning, B. J. Pichler, et al. (2001) A Monte Carlo study of high-resolution PET with granulated dual-layer detectors. IEEE Trans Nucl Sci 48: 1490–1495

    Article  Google Scholar 

  38. D. L. Alexoff, P. Vaska, D. Marsteller, et al. (2003) Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med 44: 815–822

    CAS  PubMed  Google Scholar 

  39. A. Fulterer, S. Schneider, B. Gundlich, et al. (2007) Scatter analysis of the ClearPET™ Neuro using Monte Carlo simulations. In Advances in Medical Engineering. Springer, Heidelberg, pp 109–114

    Google Scholar 

  40. M. Bentourkia, P. Msaki, J. Cadorette, R. Lecomte (1995) Energy dependence of scatter components in multispectral PET imaging. IEEE Trans Med Imaging 14: 138–145

    Article  CAS  PubMed  Google Scholar 

  41. M. Bentourkia, M. Laribi, E. Lakinsky, J. Cadorette (2002) Scatter restoration in PET imaging, IEEE Nuclear Science Symposium Conference Record, 10-16.11.2002, Norlfolk, VA, USA.

    Google Scholar 

  42. M. Bentourkia, R. Lecomte (1999) Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 18: 66–73

    Article  CAS  PubMed  Google Scholar 

  43. M. Lubberink, T. Kosugi, H. Schneider, H. Ohba, M. Bergstrom (2004) Non-stationary convolution subtraction scatter correction with a dual-exponential scatter kernel for the Hamamatsu SHR-7700 animal PET scanner. Phys Med Biol 49: 833–842

    Article  PubMed  Google Scholar 

  44. A. Ferrero, J. K. Poon, A. J. Chaudhari, L. R. MacDonald, R. D. Badawi (2011) Effect of object size on scatter fraction estimation methods for PET- A computer simulation study. IEEE Trans Nucl Sci 58: 82–86

    Article  Google Scholar 

  45. A. Konik, M. T. Madsen, J. J. Sunderland (2010) GATE simulations of human and small animal PET for determination of scatter fraction as a function of object size. IEEE Trans Nucl Sci 57: 2558–2563

    Article  CAS  Google Scholar 

  46. National Electrical Manufacturers Association, “NEMA Standards Publication NU 4 – 2008. Performance Measurements of Small Animal Positron Emission Tomographs” (National Electrical Manufacturers Association, 2008)

    Google Scholar 

  47. R. Prasad, O. Ratib, H. Zaidi (2010) Performance evaluation of the FLEX Triumph™ X-PET scanner using the NEMA NU-04 standards. J Nucl Med 51: 1608–1615

    Article  PubMed  Google Scholar 

  48. R. Prasad, O. Ratib, H. Zaidi (2011) NEMA NU-04-based performance characteristics of the LabPET-8™ small animal PET scanner. Phys Med Biol 56: 6649–6664

    Article  PubMed  Google Scholar 

  49. National Electrical Manufacturers Association, “Standards Publication NU 2-2007. Performance measurements of positron emission tomographs.” NU 2-2007 (National Electrical Manufacturers Association, 2007)

    Google Scholar 

  50. R. Laforest, D. Longford, S. Siegel, D. F. Newport, J. Yap (2007) Performance evaluation of the microPET®—FOCUS-F120. IEEE Trans Nucl Sci 54: 42–49

    Article  Google Scholar 

  51. R. Prasad, H. Zaidi (2012) A cone-shaped phantom for assessment of small animal PET scatter fraction and count rate performance. Mol Imaging Biol 14: 561–571

    Article  PubMed Central  PubMed  Google Scholar 

  52. J. M. Wilson, S. J. Lokitz, T. G. Turkington (2011) Development of a fillable, tapered PET/CT phantom. IEEE Trans Nuc Sci 58: 651–659

    Article  Google Scholar 

  53. A. Rominger, E. Mille, S. Zhang, et al. (2010) Validation of the octamouse for simultaneous 18F-fallypride small-animal PET recordings from 8 mice. J Nucl Med 51: 1576–1583

    Article  PubMed  Google Scholar 

  54. R. Prasad, H. Zaidi (2014) Scatter characterization and correction for simultaneous multiple small-animal PET imaging. Mol Imaging Biol 16: 199–209

    Google Scholar 

  55. J. Qi, R. H. Huesman (2002) Scatter correction for positron emission mammography. Phys Med Biol 47: 2759–2771

    Article  PubMed  Google Scholar 

  56. M. Bentourkia, O. Sarrhini (2009) Simultaneous attenuation and scatter corrections in small animal PET imaging. Comput Med Imaging Graph 33: 477–488

    Article  PubMed  Google Scholar 

  57. C. C. Watson (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47: 1587–1594

    Article  Google Scholar 

  58. H. Zaidi, M.-L. Montandon (2007) Scatter compensation techniques in PET. PET Clinics 2: 219–234

    Article  Google Scholar 

  59. P. L. Chow, F. R. Rannou, A. F. Chatziioannou (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50: 1837–1850

    Article  PubMed Central  PubMed  Google Scholar 

  60. Y. C. Tai, R. Laforest (2005) Instrumentation aspects of animal PET. Annu Rev Biomed Eng 7: 255–285

    Article  CAS  PubMed  Google Scholar 

  61. F. H. Fahey, H. D. Gage, N. Buchheimer, et al. (2004) Evaluation of the quantitative capability of a high-resolution positron emission tomography scanner for small animal imaging. J Comput Assist Tomogr 28: 842–848

    Article  PubMed  Google Scholar 

  62. W. Lehnert, S. R. Meikle, S. Siegel, et al. (2006) Evaluation of transmission methodology and attenuation correction for the microPET Focus 220 animal scanner. Phys Med Biol 51: 4003–4016

    Article  CAS  PubMed  Google Scholar 

  63. E. Vandervoort, M. L. Camborde, S. Jan, V. Sossi (2007) Monte Carlo modelling of singles-mode transmission data for small animal PET scanners. Phys Med Biol 52: 3169–3184

    Article  PubMed  Google Scholar 

  64. C. J. Thompson, R. Lecomte, J. Cadorette (2000) Feasibility of using beta-gamma coincidence for 3D PET attenuation correction. IEEE Trans Nucl Sci 47: 1176–1181

    Article  CAS  Google Scholar 

  65. M.-L. Camborde, C. J. Thompson, D. Togane, N. Zhang, A. Reader (2004) A positron-decay triggered transmission source for positron emission tomography. IEEE Trans Nucl Sci 51: 53–57

    Article  Google Scholar 

  66. E. L. Ritman (2002) Molecular imaging in small animals-roles for micro-CT. J Cell Biochem Suppl 39: 116–124

    Google Scholar 

  67. A. Hwang, B. Hasegawa (2005) Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 32: 2799–2804

    Article  PubMed  Google Scholar 

  68. A. B. Hwang, C. C. Taylor, H. F. Vanbrocklin, M. W. Dae, B. H. Hasegawa (2006) Attenuation correction of small animal SPECT images acquired with 125I-Iodorotenone. IEEE Trans Nucl Sci 53: 1213–1220

    Article  Google Scholar 

  69. P. L. Chow, D. B. Stout, E. Komisopoulou, A. F. Chatziioannou (2006) A method of image registration for small animal, multi-modality imaging. Phys Med Biol 51: 379–390

    Article  PubMed Central  PubMed  Google Scholar 

  70. A. L. Goertzen, A. K. Meadors, R. W. Silverman, S. R. Cherry (2002) Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 21: 4315–4328

    Article  Google Scholar 

  71. R. Fontaine, F. Belanger, J. Cadorette, et al. (2005) Architecture of a dual-modality, high-resolution, fully digital positron emission tomography/computed tomography (PET/CT) scanner for small animal imaging. IEEE Trans Nucl Sci 52: 691–696

    Article  Google Scholar 

  72. H. Liang, Y. Yang, K. Yang, et al. (2007) A microPET/CT system for in vivo small animal imaging. Phys Med Biol 52: 3881–3894

    Article  CAS  PubMed  Google Scholar 

  73. R. Yao, J. Seidel, J.-S. Liow, M. V. Green (2005) Attenuation correction for the NIH ATLAS small animal PET scanner. IEEE Trans Nucl Sci 52: 664–668

    Article  Google Scholar 

  74. P. E. Kinahan, B. H. Hasegawa, T. Beyer (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33: 166–179

    Article  PubMed  Google Scholar 

  75. T. Beyer, P. E. Kinahan, D. W. Townsend, D. Sashin (1994) The use of X-ray CT for attenuation correction of PET data, Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, 30 Oct.–5 Nov., Norfolk, VA, USA

    Google Scholar 

  76. P. E. Kinahan, D. W. Townsend, T. Beyer, D. Sashin (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25: 2046–2053

    Article  CAS  PubMed  Google Scholar 

  77. C. Bai, L. Shao, A. J. Da Silva, Z. Zhao (2003) A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 50: 1510–1515

    Article  Google Scholar 

  78. M. R. Ay, M. Shirmohammad, S. Sarkar, A. Rahmim, H. Zaidi (2011) Comparative assessment of energy-mapping approaches in CT-based attenuation correction for PET. Mol Imaging Biol 13: 187–198

    Article  PubMed  Google Scholar 

  79. R. Prasad, M. R. Ay, O. Ratib, H. Zaidi (2011) CT-based attenuation correction on the FLEX Triumph™ preclinical PET/CT scanner. IEEE Trans Nucl Sci 58: 66–75

    Article  CAS  Google Scholar 

  80. M. J. Guy, I. A. Castellano-Smith, M. A. Flower, et al. (1998) DETECT-dual energy transmission estimation CT-for improved attenuation correction in SPECT and PET. IEEE Trans Nucl Sci 45: 1261–1267

    Article  Google Scholar 

  81. J. P. Carney, D. W. Townsend, V. Rappoport, B. Bendriem (2006) Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys 33: 976–983

    Article  PubMed  Google Scholar 

  82. M. Ay, H. Zaidi (2006) Assessment of errors caused by x-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 33: 1301–1313

    Article  PubMed  Google Scholar 

  83. P. L. Chow, N. T. Vu, A. F. Chatziioannou (2004) Estimating the magnitude of scatter in small animal cone-beam CT, IEEE Nuclear Science Symposium Conference Record. Vol. 5; pp 2752–2754

    Google Scholar 

  84. Y. C. Ni, M. L. Jan, K. W. Chen, et al. (2006) Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging. Nucl Instr Meth A 569: 245–249

    Article  CAS  Google Scholar 

  85. D. Gutierrez, H. Zaidi (2011) Assessment of scatter for the micro-CT subsystem of the trimodality FLEX Triumph preclinical scanner. Med Phys 38: 4154–4165

    Article  PubMed  Google Scholar 

  86. W. Yao, K. W. Leszczynski (2009) An analytical approach to estimating the first order x-ray scatter in heterogeneous medium. Med Phys 36: 3145–3156

    Article  PubMed  Google Scholar 

  87. M. S. Judenhofer, C. Catana, B. K. Swann, et al. (2007) Simultaneous PET/MR images, acquired with a compact MRI compatible PET detector in a 7 Tesla magnet. Radiology 244: 807–814

    Article  PubMed  Google Scholar 

  88. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, et al. (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14: 459–465

    Article  CAS  PubMed  Google Scholar 

  89. C. Catana, D. Procissi, Y. Wu, et al. (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105: 3705–3710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. S. H. Maramraju, S. D. Smith, S. S. Junnarkar, et al. (2011) Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 56: 2459–2480

    Article  PubMed  Google Scholar 

  91. H. F. Wehrl, M. S. Judenhofer, A. Thielscher, et al. (2011) Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med 65: 269–279

    Article  PubMed Central  PubMed  Google Scholar 

  92. S. Yamamoto, T. Watabe, H. Watabe, et al. (2012) Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Phys Med Biol 57: N1–N13

    Article  PubMed  Google Scholar 

  93. H. Zaidi (2007) Is MRI-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244: 639–642

    Article  PubMed  Google Scholar 

  94. M. Hofmann, B. Pichler, B. Schölkopf, T. Beyer (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nuc Med Mol Imaging 36: S93–S104

    Article  Google Scholar 

  95. H. Zaidi, A. Del Guerra (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38: 5667–5689

    Article  PubMed  Google Scholar 

  96. M.-L. Montandon, H. Zaidi (2005) Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 25: 278–286

    Article  PubMed  Google Scholar 

  97. A. J. Chaudhari, A. A. Joshi, A. W. Toga, et al. (2009) Atlas-based attenuation correction for small animal PET/MRI scanners, IEEE Nuclear Science Symposium & Medical Imaging Conference, 25–31 October 2009, Orlando (FL), USA, unpublished.

    Google Scholar 

  98. E. Schreibmann, J. A. Nye, D. M. Schuster, et al. (2010) MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys 37: 2101–2109

    Article  PubMed  Google Scholar 

  99. M. Hofmann, I. Bezrukov, F. Mantlik, et al. (2011) MRI-based attenuation correction for whole-body PET/MRI: Quantitative evaluation of segmentation- and Atlas-based methods. J Nucl Med 52: 1392–1399

    Article  PubMed  Google Scholar 

  100. O. Rousset, H. Zaidi: Correction of partial volume effects in emission tomography. In Quantitative analysis of nuclear medicine images. H. Zaidi, Ed. Springer, New York, 2006. pp 236–271

    Chapter  Google Scholar 

  101. M. Soret, S. L. Bacharach, I. Buvat (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48: 932–945

    Article  PubMed  Google Scholar 

  102. O. Rousset, A. Rahmim, A. Alavi, H. Zaidi (2007) Partial volume correction strategies in PET. PET Clinics 2: 235–249

    Article  Google Scholar 

  103. C. Kuntner, A. L. Kesner, M. Bauer, et al. (2009) Limitations of small animal PET imaging with [18F]FDDNP and FDG for quantitative studies in a transgenic mouse model of Alzheimer's disease. Mol Imaging Biol 11: 236–240

    Article  PubMed  Google Scholar 

  104. N. Aide, C. Desmonts, J. M. Beauregard, et al. (2010) High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications. Eur J Nucl Med Mol Imaging 37: 991–1001

    Article  PubMed  Google Scholar 

  105. M. Tatsumi, C. Cohade, Y. Nakamoto, R. L. Wahl (2003) Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 229: 831–837

    Article  PubMed  Google Scholar 

  106. M. D. Seemann, R. Beck, S. Ziegler (2006) In vivo tumor imaging in mice using a state-of-the-art clinical PET/CT in comparison with a small animal PET and a small animal CT. Technol Cancer Res Treat 5: 537–542

    PubMed  Google Scholar 

  107. A. Helisch, O. Thews, H.-G. Buchholz, et al. (2010) Small animal tumour imaging with MRI and the ECAT EXACT scanner: application of partial volume correction and comparison with microPET data. Nucl Med Commun 31: 294–300

    Article  PubMed  Google Scholar 

  108. E. J. Hoffman, S. C. Huang, M. E. Phelps (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3: 299–308

    Google Scholar 

  109. R. M. Kessler, J. R. Ellis, M. Eden (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522

    Article  CAS  PubMed  Google Scholar 

  110. L. Geworski, B. O. Knoop, M. L. de Cabrejas, W. H. Knapp, D. L. Munz (2000) Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 27: 161–169

    Article  CAS  PubMed  Google Scholar 

  111. N. Aide, M. H. Louis, S. Dutoit, et al. (2007) Improvement of semi-quantitative small-animal PET data with recovery coefficients: A phantom and rat study. Nucl Med Commun 28: 813–822

    Article  PubMed  Google Scholar 

  112. W. Lehnert, M. C. Gregoire, A. Reilhac, S. R. Meikle (2012) Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain. Neuroimage 60: 2144–2157

    Article  PubMed  Google Scholar 

  113. L. Arhjoul, O. Sarrhini, M. Bentourkia (2006) Partial volume correction using continuous wavelet technique in small animal PET imaging, IEEE Nuclear Science Symposium Conference Record Vol. 5; pp 2717–2721

    Google Scholar 

  114. A. E. Spinelli, D. D'Ambrosio, G. Fiacchi, et al. (2008) Pixel-based partial volume correction of small animal PET images using Point Spread Function system characterization: Evaluation of effects on cardiac output, perfusion and metabolic rate using parametric images, IEEE Nuclear Science Symposium Conference Record, pp 4260–4265.

    Google Scholar 

  115. D. D'Ambrosio, G. Fiacchi, P. Cilibrizzi, et al. (2008) Partial volume correction of small animal PET cardiac dynamic images using iterative reconstruction: effects on glucose metabolic rate measurement, Proc. Conf. Computers in Cardiology, pp 1093–1096.

    Google Scholar 

  116. T. Dumouchel, R. A. deKemp (2011) Analytical-based partial volume recovery in mouse heart imaging. IEEE Trans Nucl Sci 58: 110–120

    Article  Google Scholar 

  117. T. Dumouchel, S. Thorn, M. Kordos, et al. (2012) A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging. Phys Med Biol 57: 4309–4334

    Article  PubMed  Google Scholar 

  118. Y. H. Fang, R. F. Muzic, Jr. (2008) Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 49: 606–614

    Article  PubMed  Google Scholar 

  119. K. H. Su, J. S. Lee, J. H. Li, et al. (2009) Partial volume correction of the microPET blood input function using ensemble learning independent component analysis. Phys Med Biol 54: 1823–1846

    Article  PubMed  Google Scholar 

  120. J. G. Mannheim, M. S. Judenhofer, A. Schmid, et al. (2012) Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner. Phys Med Biol 57: 3981–3993

    Article  PubMed  Google Scholar 

  121. A. Le Pogam, M. Hatt, P. Descourt, et al. (2011) Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Med Phys 38: 4920–4923

    Article  PubMed Central  PubMed  Google Scholar 

  122. R. Carson. Tracer kinetic modeling in PET (2003). In Positron Emission Tomography: Basic Science and Clinical Practice. P. E. Valk, D. L. Bailey, D. W. Townsend, M. N. Maisey, Eds. Springer-Verlag, London, pp 147–179

    Google Scholar 

  123. M. h. Bentourkia, H. Zaidi (2007) Tracer kinetic modeling in PET PET Clinics 2: 267–277

    Google Scholar 

  124. Y. Su, K. I. Shoghi (2008) Wavelet denoising in voxel-based parametric estimation of small animal PET images: a systematic evaluation of spatial constraints and noise reduction algorithms. Phys Med Biol 53: 5899–5915

    Article  PubMed  Google Scholar 

  125. P. Dupont, J. Warwick (2009) Kinetic modelling in small animal imaging with PET. Methods 48: 98–103

    Article  CAS  PubMed  Google Scholar 

  126. T. Hideo, S. Nishiyama, T. Kakiuchi, et al. (2001) Ketamine alters the availability of striatal dopamine transporter by [11C]ß-CFT and 11C]ß-CIT-FE in the monkey brain. Synapse 42: 273–280

    Article  Google Scholar 

  127. T. Mauxion, J. Barbet, J. Suhard, et al. (2013) Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data. Med Phys 40: 052501–11

    Article  PubMed  Google Scholar 

  128. T. Xie, H. Zaidi (2013) Effect of emaciation and obesity on small animal internal radiation dosimetry for positron-emitting radionuclides. Eur J Nucl Med Mol Imaging 40: 1748–1759

    Article  CAS  PubMed  Google Scholar 

  129. T. Xie, H. Zaidi (2013) Assessment of S-values in stylized and voxel-based rat models for positron-emitting radionuclides. Mol Imaging Biol 15: 542–551

    Article  PubMed  Google Scholar 

  130. H. M. Wu, G. Sui, C. C. Lee, et al. (2007) In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. J Nucl Med 48: 837–845

    Article  CAS  PubMed  Google Scholar 

  131. L. Convert, F. G. Baril, V. Boisselle, et al. (2012) Blood compatible microfluidic system for pharmacokinetic studies in small animals. Lab Chip 12: 4683–4692

    Article  CAS  PubMed  Google Scholar 

  132. S. Gambhir, M. Schwaiger, S. Huang, et al. (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 30: 359–366

    CAS  PubMed  Google Scholar 

  133. G. Germano, B. Chen, S. Huang, et al. (1992) Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 33: 613–620

    CAS  PubMed  Google Scholar 

  134. P. T. Meyer, V. Circiumaru, C. A. Cardi, et al. (2006) Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function. Eur J Nucl Med Mol Imaging 33: 948–954

    Article  PubMed  Google Scholar 

  135. F. Hermansen, A. A. Lammertsma (1996) Linear dimension reduction of sequences of medical images: III. Factor analysis in signal space. Phys Med Biol 41: 1469–1481

    Article  CAS  PubMed  Google Scholar 

  136. R. N. Gunn, S. R. Gunn, V. J. Cunningham (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21: 635–652

    Article  CAS  PubMed  Google Scholar 

  137. J. Ahn, D. Lee, J. Lee, et al. (2001) Quantification of regional myocardial blood flow using dynamic H2(15)O PET and factor analysis. J Nucl Med 42: 782–787

    CAS  PubMed  Google Scholar 

  138. H. Wu, S. Huang, V. Allada, et al. (1996) Derivation of input function from FDG-PET studies in small hearts. J Nucl Med 37: 1717–1722

    CAS  PubMed  Google Scholar 

  139. M. Naganawa, Y. Kimura, T. Nariai, et al. (2005) Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis. Neuroimage 26: 885–890

    Article  PubMed  Google Scholar 

  140. S. Yamamoto, K. Tarutani, M. Suga, et al. (2001) Development of a phoswich detector for a continuous blood-sampling system. IEEE Trans Nucl Sci 48: 1408–1411

    Article  Google Scholar 

  141. F. Pain, P. Laniece, R. Mastrippolito, et al. (2004) Arterial input function measurement without blood sampling using a beta-microprobe in rats. J Nucl Med 45: 1577–1582

    PubMed  Google Scholar 

  142. R. Laforest, T. L. Sharp, J. A. Engelbach, et al. (2005) Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 32: 679–685

    Article  CAS  PubMed  Google Scholar 

  143. C. Casteels, P. Vermaelen, J. Nuyts, et al. (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47: 1858–1866

    PubMed  Google Scholar 

  144. D. J. Rubins, W. P. Melega, G. Lacan, et al. (2003) Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage 20: 2100–2118

    Article  PubMed  Google Scholar 

  145. A. L. Kesner, M. Dahlbom, S. C. Huang, et al. (2006) Semiautomated analysis of small-animal PET data. J Nucl Med 47: 1181–1186

    PubMed  Google Scholar 

  146. W. P. Segars, B. M. Tsui, E. C. Frey, G. A. Johnson, S. S. Berr (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6: 149–159

    Article  PubMed  Google Scholar 

  147. B. Dogdas, D. Stout, A. F. Chatziioannou, R. M. Leahy (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52: 577–587

    Article  PubMed Central  PubMed  Google Scholar 

  148. R. Taschereau, P. L. Chow, A. F. Chatziioannou (2006) Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33: 216–224

    Article  PubMed Central  PubMed  Google Scholar 

  149. A. Bitar, A. Lisbona, P. Thedrez, et al. (2007) A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP). Phys Med Biol 52: 1013–1025

    Article  CAS  PubMed  Google Scholar 

  150. M. G. Stabin, T. E. Peterson, G. E. Holburn, M. A. Emmons (2006) Voxel-based mouse and rat models for internal dose calculations. J Nucl Med 47: 655–659

    PubMed  Google Scholar 

  151. L. Wu, G. Zhang, Q. Luo, Q. Liu (2008) An image-based rat model for Monte Carlo organ dose calculations. Med Phys 35: 3759–3764

    Article  PubMed  Google Scholar 

  152. P. H. Peixoto, J. W. Vieira, H. Yoriyaz, F. R. Lima (2008) Photon and electron absorbed fractions calculated from a new tomographic rat model. Phys Med Biol 53: 5343–5355

    Article  CAS  PubMed  Google Scholar 

  153. G. Zhang, T. Xie, H. Bosmans, Q. Liu (2009) Development of a rat computational phantom using boundary representation method for Monte Carlo simulation in radiological imaging. Proceedings of the IEEE 97: 2006–2014

    Google Scholar 

  154. H. Zaidi, X. G. Xu (2007) Computational anthropomorphic models of the human anatomy: The path to realistic Monte Carlo modeling in medical imaging. Annu Rev Biomed Eng 9: 471–500

    Article  CAS  PubMed  Google Scholar 

  155. H. Zaidi, B. M. W. Tsui (2009) Computational anthropomorphic anatomical models. Proceedings of the IEEE 97: 1935–1937

    Google Scholar 

  156. D. F. Gutierrez, H. Zaidi (2012) Automated analysis of small animal PET studies through deformable registration to an atlas. Eur J Nucl Med Mol Imaging 39: 1807–1820

    Article  PubMed Central  PubMed  Google Scholar 

  157. R. Maroy, R. Boisgard, C. Comtat, et al. (2010) Quantitative organ time activity curve extraction from rodent PET images without anatomical prior. Med Phys 37: 1507–1517

    Article  CAS  PubMed  Google Scholar 

  158. A. Rahmim, O. Rousset, H. Zaidi (2007) Strategies for motion tracking and correction in PET. PET Clinics 2: 251–266

    Article  Google Scholar 

  159. A. Z. Kyme, V. W. Zhou, S. R. Meikle, C. Baldock, R. R. Fulton (2011) Optimised motion tracking for positron emission tomography studies of brain function in awake rats. PLoS One 6: e21727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. A. Kyme, S. Meikle, C. Baldock, R. Fulton (2012) Tracking and characterizing the head motion of unanaesthetized rats in positron emission tomography. J R Soc Interface 9: 3094–3107

    Article  PubMed Central  PubMed  Google Scholar 

  161. R. Laforest, X. Liu (2009) Cascade removal and microPET imaging with 76Br. Phys Med Biol 54: 1503–1531

    Article  CAS  PubMed  Google Scholar 

  162. X. Liu, R. Laforest (2009) Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol 36: 551–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation under grant SNSF 31003A-125246. The author would like to thank Rameshwar Prasad (PhD student) for supplying some of the material used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zaidi, H. (2014). Quantification of Small-Animal Imaging Data. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_17

Download citation

Publish with us

Policies and ethics