Skip to main content

Human Papillomavirus: Pathogenesis and Host Immune Response

  • Chapter
  • First Online:
Viruses and Human Cancer

Abstract

Our understanding of the biology of the human papillomavirus (HPV) has grown considerably over the last quarter century. While advances have been made in prevention with the development of vaccines, there remains a need for further research to help those who are already infected and those for whom vaccination is not an option. Additionally, the mechanism of HPV-associated oncogenesis can provide mechanistic clues for other, non-HPV-associated cancers. This chapter discusses the life cycle of the virus, including a review of the current theories of viral entry into the host cell, and the functions of each of the HPV proteins, including the well-characterized HPV E6 and E7. The HPV-mediated disruption of normal cellular functions including cell cycle, metabolism, epigenetics, immune surveillance, and DNA replication, and how these disruptions can lead to cellular transformation are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcea R, Chen X. Chapter 5: Papillomavirus structure and assembly. In: Garcea R, DiMaio D, editors. The papilloma viruses. 1st ed. New York: Springer; 2007.

    Google Scholar 

  2. Howley PM, Lowy DR. Papillomaviruses. In: Knipe D, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2299–354.

    Google Scholar 

  3. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A. 1992;89(24):12180–4. Epub 1992/12/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bernard HU, Burk RD, Chen Z, van Doorslaer K, Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9. Epub 2010/03/09.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Joh J, Jenson AB, King W, Proctor M, Ingle A, Sundberg JP, et al. Genomic analysis of the first laboratory-mouse papillomavirus. J Gen Virol. 2011;92(Pt 3):692–8. Epub 2010/11/19.

    CAS  PubMed  Google Scholar 

  6. Schiffman M, Rodriguez AC, Chen Z, Wacholder S, Herrero R, Hildesheim A, et al. A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res. 2010;70(8):3159–69. Epub 2010/04/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Mistry N, Simonsson M, Evander M. Transcriptional activation of the human papillomavirus type 5 and 16 long control region in cells from cutaneous and mucosal origin. Virol J. 2007;4:27. Epub 2007/03/14.

    PubMed Central  PubMed  Google Scholar 

  8. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110(5):525–41. Epub 2006/04/07.

    CAS  Google Scholar 

  9. Chow LT, Broker TR, Steinberg BM. The natural history of human papillomavirus infections of the mucosal epithelia. APMIS. 2010;118(6–7):422–49. Epub 2010/06/18.

    CAS  PubMed  Google Scholar 

  10. King LE, Dornan ES, Donaldson MM, Morgan IM. Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction. Virology. 2011;414(1):26–33. Epub 2011/04/05.

    CAS  PubMed  Google Scholar 

  11. Khan J, Davy CE, McIntosh PB, Jackson DJ, Hinz S, Wang Q, et al. Role of calpain in the formation of human papillomavirus type 16 E1^E4 amyloid fibers and reorganization of the keratin network. J Virol. 2011;85(19):9984–97. Epub 2011/07/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Stubenrauch F, Hummel M, Iftner T, Laimins LA. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol. 2000;74(3):1178–86. Epub 2000/01/11.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med. 2007;13(7):857–61. Epub 2007/07/03.

    CAS  PubMed  Google Scholar 

  14. Giroglou T, Florin L, Schafer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75(3):1565–70. Epub 2001/01/11.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Richards RM, Lowy DR, Schiller JT, Day PM. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A. 2006;103(5):1522–7. Epub 2006/01/25.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol. 1997;71(3):2449–56. Epub 1997/03/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sibbet G, Romero-Graillet C, Meneguzzi G, Campo MS. Alpha6 integrin is not the obligatory cell receptor for bovine papillomavirus type 4. J Gen Virol. 2000;81(Pt 2):327–34. Epub 2000/01/25.

    CAS  PubMed  Google Scholar 

  18. Culp TD, Christensen ND. Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology. 2004;319(1):152–61. Epub 2004/02/18.

    CAS  PubMed  Google Scholar 

  19. Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP. Mechanisms of cell entry by human papillomaviruses: an overview. Virol J. 2010;7:11. Epub 2010/01/22.

    PubMed Central  PubMed  Google Scholar 

  20. Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J. 2009;276(24):7206–16. Epub 2009/11/03.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Schneider MA, Spoden GA, Florin L, Lambert C. Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol. 2011;13(1):32–46. Epub 2010/12/21.

    CAS  PubMed  Google Scholar 

  22. Florin L, Becker KA, Lambert C, Nowak T, Sapp C, Strand D, et al. Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J Virol. 2006;80(13):6691–6. Epub 2006/06/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Day PM, Baker CC, Lowy DR, Schiller JT. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U S A. 2004;101(39):14252–7. Epub 2004/09/24.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, et al. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011;10:140. Epub 2011/11/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Androphy EJ, Lowy DR, Schiller JT. Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature. 1987;325(6099):70–3. Epub 1987/01/01.

    CAS  PubMed  Google Scholar 

  26. Mohr IJ, Clark R, Sun S, Androphy EJ, MacPherson P, Botchan MR. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science. 1990;250(4988):1694–9. Epub 1990/12/21.

    CAS  PubMed  Google Scholar 

  27. Gloss B, Bernard HU, Seedorf K, Klock G. The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J. 1987;6(12):3735–43. Epub 1987/12/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Titolo S, Pelletier A, Sauve F, Brault K, Wardrop E, White PW, et al. Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin. J Virol. 1999;73(7):5282–93. Epub 1999/06/11.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Oliveira JG, Colf LA, McBride AA. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci U S A. 2006;103(4):1047–52. Epub 2006/01/18.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Ilves I, Kivi S, Ustav M. Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which Is mediated by the viral E2 protein and its binding sites. J Virol. 1999;73(5):4404–12. Epub 1999/04/10.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243(4893):934–7. Epub 1989/02/17.

    CAS  PubMed  Google Scholar 

  32. Dyson N, Guida P, Munger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol. 1992;66(12):6893–902. Epub 1992/12/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. McLaughlin-Drubin ME, Munger K. The human papillomavirus E7 oncoprotein. Virology. 2009;384(2):335–44. Epub 2008/11/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505. Epub 1993/11/05.

    CAS  PubMed  Google Scholar 

  35. Stauffer Y, Raj K, Masternak K, Beard P. Infectious human papillomavirus type 18 pseudovirions. J Mol Biol. 1998;283(3):529–36. Epub 1998/10/24.

    CAS  PubMed  Google Scholar 

  36. Doorbar J, Ely S, Sterling J, McLean C, Crawford L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature. 1991;352(6338):824–7. Epub 1991/08/29.

    CAS  PubMed  Google Scholar 

  37. WHO. Human papillomavirus and related cancers. Summary report. 2010. http://apps.who.int/hpvcentre/statistics/dynamic/ico/country_pdf/XWX.pdf?CFID=7061305&CFTOKEN=35466460.

  38. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60. Epub 2010/07/02.

    CAS  PubMed  Google Scholar 

  39. Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987;61(4):962–71. Epub 1987/04/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314(6006):111–4. Epub 1985/03/07.

    CAS  PubMed  Google Scholar 

  41. Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989;63(10):4417–21. Epub 1989/10/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989;8(12):3905–10. Epub 1989/12/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. McCance DJ, Kopan R, Fuchs E, Laimins LA. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A. 1988;85(19):7169–73. Epub 1988/10/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Arbeit JM, Howley PM, Hanahan D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci U S A. 1996;93(7):2930–5. Epub 1996/04/02.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Thierry F, Yaniv M. The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 1987;6(11):3391–7. Epub 1987/11/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Rosl F, Durst M, zur Hausen H. Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine. EMBO J. 1988;7(5):1321–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. von Knebel DM, Oltersdorf T, Schwarz E, Gissmann L. Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res. 1988;48(13):3780–6. Epub 1988/07/01.

    Google Scholar 

  48. Suprynowicz FA, Disbrow GL, Simic V, Schlegel R. Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology. 2005;332(1):102–13. Epub 2005/01/22.

    CAS  PubMed  Google Scholar 

  49. Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993;67(8):4521–32. Epub 1993/08/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Krawczyk E, Suprynowicz FA, Liu X, Dai Y, Hartmann DP, Hanover J, et al. Koilocytosis: a cooperative interaction between the human papillomavirus E5 and E6 oncoproteins. Am J Pathol. 2008;173(3):682–8. Epub 2008/08/09.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Pim D, Collins M, Banks L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene. 1992;7(1):27–32. Epub 1992/01/01.

    CAS  PubMed  Google Scholar 

  52. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology. 2009;384(2):324–34. Epub 2008/12/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Barbosa MS, Lowy DR, Schiller JT. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol. 1989;63(3):1404–7. Epub 1989/03/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Cole ST, Danos O. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol. 1987;193(4):599–608.

    CAS  PubMed  Google Scholar 

  55. Smotkin D, Prokoph H, Wettstein FO. Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol. 1989;63(3):1441–7. Epub 1989/03/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hummel M, Hudson JB, Laimins LA. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol. 1992;66(10):6070–80. Epub 1992/10/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Tang S, Tao M, McCoy Jr JP, Zheng ZM. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. 2006;80(9):4249–63. Epub 2006/04/14.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, et al. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86(1):94–107. Epub 2011/10/21.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Pim D, Banks L. HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. Oncogene. 1999;18(52):7403–8. Epub 1999/12/22.

    CAS  PubMed  Google Scholar 

  60. Pim D, Massimi P, Banks L. Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene. 1997;15(3):257–64. Epub 1997/07/17.

    CAS  PubMed  Google Scholar 

  61. Tungteakkhun SS, Filippova M, Fodor N, Duerksen-Hughes PJ. The full-length isoform of human papillomavirus 16 E6 and its splice variant E6* bind to different sites on the procaspase 8 death effector domain. J Virol. 2010;84(3):1453–63. Epub 2009/11/13.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63(6):1129–36. Epub 1990/12/21.

    CAS  PubMed  Google Scholar 

  63. Mietz JA, Unger T, Huibregtse JM, Howley PM. The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J. 1992;11(13):5013–20. Epub 1992/12/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Camus S, Menendez S, Cheok CF, Stevenson LF, Lain S, Lane DP. Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene. 2007;26(28):4059–70. Epub 2007/01/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol. 1993;13(8):4918–27. Epub 1993/08/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande PS. Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology. 2003;306(1):87–99. Epub 2003/03/07.

    CAS  PubMed  Google Scholar 

  67. Brimer N, Lyons C, Vande Pol SB. Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology. 2007;358(2):303–10. Epub 2006/10/07.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol. 1999;80(Pt 6):1513–7. Epub 1999/06/22.

    CAS  PubMed  Google Scholar 

  69. Tong X, Howley PM. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci U S A. 1997;94(9):4412–7. Epub 1997/04/29.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Elston RC, Napthine S, Doorbar J. The identification of a conserved binding motif within human papillomavirus type 16 E6 binding peptides, E6AP and E6BP. J Gen Virol. 1998;79(Pt 2):371–4. Epub 1998/02/24.

    CAS  PubMed  Google Scholar 

  71. Vande Pol SB, Brown MC, Turner CE. Association of Bovine Papillomavirus Type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene. 1998;16(1):43–52. Epub 1998/02/19.

    CAS  PubMed  Google Scholar 

  72. Lee SS, Weiss RS, Javier RT. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A. 1997;94(13):6670–5. Epub 1997/06/24.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A. 1997;94(21):11612–6. Epub 1997/10/23.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell. 1996;85(7):1067–76. Epub 1996/06/28.

    CAS  PubMed  Google Scholar 

  75. Morais Cabral JH, Petosa C, Sutcliffe MJ, Raza S, Byron O, Poy F, et al. Crystal structure of a PDZ domain. Nature. 1996;382(6592):649–52. Epub 1996/08/15.

    CAS  PubMed  Google Scholar 

  76. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, et al. A specificity map for the PDZ domain family. PLoS Biol. 2008;6(9):e239. Epub 2008/10/03.

    PubMed Central  PubMed  Google Scholar 

  77. Massimi P, Gammoh N, Thomas M, Banks L. HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene. 2004;23(49):8033–9. Epub 2004/09/21.

    CAS  PubMed  Google Scholar 

  78. Thomas M, Massimi P, Navarro C, Borg JP, Banks L. The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene. 2005;24(41):6222–30. Epub 2005/08/17.

    CAS  PubMed  Google Scholar 

  79. Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME, et al. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol. 2008;82(5):2493–500. Epub 2007/12/28.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol. 2003;77(12):6957–64. Epub 2003/05/28.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Roberts S, Delury C, Marsh E. The PDZ protein discs-large (DLG): the ‘Jekyll and Hyde’ of the epithelial polarity proteins. FEBS J. 2012;279(19):3549–58. Epub 2012/08/01.

    CAS  PubMed  Google Scholar 

  82. Kranjec C, Banks L. A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J Virol. 2011;85(4):1757–64. Epub 2010/12/03.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene. 2008;27(55):6888–907. Epub 2008/11/26.

    CAS  PubMed  Google Scholar 

  84. Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol. 2000;20(21):8244–53. Epub 2000/10/12.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO. Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene. 2008;27(46):5988–6001. Epub 2008/07/22.

    CAS  PubMed  Google Scholar 

  86. Glondu-Lassis M, Dromard M, Lacroix-Triki M, Nirde P, Puech C, Knani D, et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 2010;70(12):5116–26. Epub 2010/05/27.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhu JH, Chen R, Yi W, Cantin GT, Fearns C, Yang Y, et al. Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene. 2008;27(18):2525–31. Epub 2007/11/06.

    CAS  PubMed  Google Scholar 

  88. Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol. 2007;81(5):2231–9. Epub 2006/12/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380(6569):79–82. Epub 1996/03/07.

    CAS  PubMed  Google Scholar 

  90. Xu L, Li S, Stohr BA. The role of telomere biology in cancer. Annu Rev Pathol. 2013;8:49–78. Epub 2012/09/01.

    CAS  PubMed  Google Scholar 

  91. Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A. 2003;100(14):8211–6. Epub 2003/06/25.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004;18(18):2269–82. Epub 2004/09/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, et al. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem. 2005;280(11):10807–16. Epub 2005/01/19.

    CAS  PubMed  Google Scholar 

  94. Liu X, Dakic A, Zhang Y, Dai Y, Chen R, Schlegel R. HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A. 2009;106(44):18780–5. Epub 2009/10/22.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Phelps WC, Yee CL, Munger K, Howley PM. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell. 1988;53(4):539–47. Epub 1988/05/20.

    CAS  PubMed  Google Scholar 

  96. Barbosa MS, Edmonds C, Fisher C, Schiller JT, Lowy DR, Vousden KH. The region of the HPV E7 oncoprotein homologous to adenovirus E1a and Sv40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. EMBO J. 1990;9(1):153–60. Epub 1990/01/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Rawls JA, Pusztai R, Green M. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation. J Virol. 1990;64(12):6121–9. Epub 1990/12/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Liu X, Clements A, Zhao K, Marmorstein R. Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem. 2006;281(1):578–86. Epub 2005/10/27.

    CAS  PubMed  Google Scholar 

  99. Ohlenschlager O, Seiboth T, Zengerling H, Briese L, Marchanka A, Ramachandran R, et al. Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene. 2006;25(44):5953–9. Epub 2006/04/26.

    CAS  PubMed  Google Scholar 

  100. Lee JO, Russo AA, Pavletich NP. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature. 1998;391(6670):859–65. Epub 1998/03/12.

    CAS  PubMed  Google Scholar 

  101. Berezutskaya E, Yu B, Morozov A, Raychaudhuri P, Bagchi S. Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ. 1997;8(12):1277–86. Epub 1998/01/07.

    CAS  PubMed  Google Scholar 

  102. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 1996;56(20):4620–4. Epub 1996/10/15.

    CAS  PubMed  Google Scholar 

  103. Gonzalez SL, Stremlau M, He X, Basile JR, Munger K. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol. 2001;75(16):7583–91. Epub 2001/07/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8(13):4099–105. Epub 1989/12/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Nor Rashid N, Yusof R, Watson RJ. Disruption of repressive p130-DREAM complexes by human papillomavirus 16 E6/E7 oncoproteins is required for cell-cycle progression in cervical cancer cells. J Gen Virol. 2011;92(Pt 11):2620–7. Epub 2011/08/05.

    PubMed  Google Scholar 

  106. Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol. 2007;81(18):9737–47. Epub 2007/07/05.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, et al. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A. 2012;109(5):E260–7. Epub 2012/01/11.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13(11):2323–30. Epub 1996/12/05.

    CAS  PubMed  Google Scholar 

  109. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11(16):2101–11. Epub 1997/08/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 1997;11(16):2090–100. Epub 1997/08/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Tommasino M, Adamczewski JP, Carlotti F, Barth CF, Manetti R, Contorni M, et al. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene. 1993;8(1):195–202. Epub 1993/01/01.

    CAS  PubMed  Google Scholar 

  112. He W, Staples D, Smith C, Fisher C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol. 2003;77(19):10566–74. Epub 2003/09/13.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Nguyen CL, Munger K. Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology. 2008;380(1):21–5. Epub 2008/08/23.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. DeMasi J, Huh KW, Nakatani Y, Munger K, Howley PM. Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc Natl Acad Sci U S A. 2005;102(32):11486–91. Epub 2005/08/06.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Munger K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A. 2005;102(32):11492–7. Epub 2005/08/03.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Banks L, Edmonds C, Vousden KH. Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene. 1990;5(9):1383–9. Epub 1990/09/01.

    CAS  PubMed  Google Scholar 

  117. Phelps WC, Munger K, Yee CL, Barnes JA, Howley PM. Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol. 1992;66(4):2418–27. Epub 1992/04/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. DeMasi J, Chao MC, Kumar AS, Howley PM. Bovine papillomavirus E7 oncoprotein inhibits anoikis. J Virol. 2007;81(17):9419–25. Epub 2007/06/29.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Zhou X, Spangle JM, Munger K. Expression of a viral oncoprotein in normal human epithelial cells triggers an autophagy-related process: is autophagy an “Achilles’ heel” of human cancers? Autophagy. 2009;5(4):578–9. Epub 2009/04/01.

    CAS  PubMed  Google Scholar 

  120. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Durr P. Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A. 1999;96(4):1291–6. Epub 1999/02/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J. 2001;356(Pt 1):247–56. Epub 2001/05/05.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. Epub 2009/05/23.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Mack H, Munger K. Modulation of autophagy-related processes by tumor viruses. Cells. 2012;1:204–47.

    PubMed Central  PubMed  Google Scholar 

  124. Zhou X, Munger K. Expression of the human papillomavirus type 16 E7 oncoprotein induces an autophagy-related process and sensitizes normal human keratinocytes to cell death in response to growth factor deprivation. Virology. 2009;385(1):192–7. Epub 2009/01/13.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Eichten A, Rud DS, Grace M, Piboonniyom SO, Zacny V, Munger K. Molecular pathways executing the “trophic sentinel” response in HPV-16 E7-expressing normal human diploid fibroblasts upon growth factor deprivation. Virology. 2004;319(1):81–93. Epub 2004/02/18.

    CAS  PubMed  Google Scholar 

  126. Spangle JM, Munger K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol. 2010;84(18):9398–407. Epub 2010/07/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, et al. Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin. J Biol Chem. 2004;279(34):35664–70. Epub 2004/06/04.

    CAS  PubMed  Google Scholar 

  128. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. Epub 2010/12/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Oh KJ, Kalinina A, Park NH, Bagchi S. Deregulation of eIF4E: 4E-BP1 in differentiated human papillomavirus-containing cells leads to high levels of expression of the E7 oncoprotein. J Virol. 2006;80(14):7079–88. Epub 2006/07/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Feng W, Duan X, Liu J, Xiao J, Brown RE. Morphoproteomic evidence of constitutively activated and overexpressed mTOR pathway in cervical squamous carcinoma and high grade squamous intraepithelial lesions. Int J Clin Exp Pathol. 2009;2(3):249–60. Epub 2008/12/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Spangle JM, Munger K. The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog. 2013;9(3):e1003237.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Proud CG. mTORC1 signalling and mRNA translation. Biochem Soc Trans. 2009;37(Pt 1):227–31. Epub 2009/01/16.

    CAS  PubMed  Google Scholar 

  133. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 1999;18(9):2449–58. Epub 1999/05/06.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Longworth MS, Laimins LA. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol. 2004;78(7):3533–41. Epub 2004/03/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 2002;277(4):2923–30. Epub 2001/11/20.

    CAS  PubMed  Google Scholar 

  136. Avvakumov N, Torchia J, Mymryk JS. Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene. 2003;22(25):3833–41. Epub 2003/06/19.

    CAS  PubMed  Google Scholar 

  137. Bernat A, Avvakumov N, Mymryk JS, Banks L. Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene. 2003;22(39):7871–81. Epub 2003/09/13.

    PubMed  Google Scholar 

  138. Baldwin A, Huh KW, Munger K. Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. J Virol. 2006;80(13):6669–77. Epub 2006/06/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Morandell D, Kaiser A, Herold S, Rostek U, Lechner S, Mitterberger MC, et al. The human papillomavirus type 16 E7 oncoprotein targets Myc-interacting zinc-finger protein-1. Virology. 2012;422(2):242–53. Epub 2011/11/22.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Lee D, Lim C, Seo T, Kwon H, Min H, Choe J. The viral oncogene human papillomavirus E7 deregulates transcriptional silencing by Brm-related gene 1 via molecular interactions. J Biol Chem. 2002;277(50):48842–8. Epub 2002/10/10.

    CAS  PubMed  Google Scholar 

  141. He H, Luo Y. Brg1 regulates the transcription of human papillomavirus type 18 E6 and E7 genes. Cell Cycle. 2012;11(3):617–27. Epub 2012/01/21.

    CAS  PubMed  Google Scholar 

  142. Holland D, Hoppe-Seyler K, Schuller B, Lohrey C, Maroldt J, Durst M, et al. Activation of the enhancer of zeste homologue 2 gene by the human papillomavirus E7 oncoprotein. Cancer Res. 2008;68(23):9964–72. Epub 2008/12/03.

    CAS  PubMed  Google Scholar 

  143. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–43. Epub 2002/09/28.

    CAS  PubMed  Google Scholar 

  144. McLaughlin-Drubin ME, Huh KW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol. 2008;82(17):8695–705. Epub 2008/06/27.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Trimarchi JM, Fairchild B, Verona R, Moberg K, Andon N, Lees JA. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc Natl Acad Sci U S A. 1998;95(6):2850–5. Epub 1998/04/18.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. McLaughlin-Drubin ME, Crum CP, Munger K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A. 2011;108(5):2130–5. Epub 2011/01/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 2009;23(10):1171–6. Epub 2009/05/20.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602. Epub 1997/03/07.

    CAS  PubMed  Google Scholar 

  149. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84. Epub 2001/04/06.

    CAS  PubMed  Google Scholar 

  150. Valmary-Degano S, Jacquin E, Pretet JL, Monnien F, Girardo B, Arbez-Gindre F, et al. Signature patterns of human papillomavirus type 16 in invasive anal carcinoma. Hum Pathol. 2013;44(6):992–1002. Epub 2012/12/26.

    CAS  PubMed  Google Scholar 

  151. Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488(7411):404–8. Epub 2012/07/31.

    CAS  PubMed  Google Scholar 

  152. Munger K, Hayakawa H, Nguyen CL, Melquiot NV, Duensing A, Duensing S. Viral carcinogenesis and genomic instability. EXS. 2006;96:179–99. Epub 2005/12/31.

    CAS  PubMed  Google Scholar 

  153. Duensing S, Munger K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 2002;62(23):7075–82. Epub 2002/12/04.

    CAS  PubMed  Google Scholar 

  154. Duensing S, Munger K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol. 2003;77(22):12331–5. Epub 2003/10/29.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Crum CP, Ikenberg H, Richart RM, Gissman L. Human papillomavirus type 16 and early cervical neoplasia. N Engl J Med. 1984;310(14):880–3. Epub 1984/04/05.

    CAS  PubMed  Google Scholar 

  156. Duensing S, Duensing A, Crum CP, Munger K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 2001;61(6):2356–60. Epub 2001/04/06.

    CAS  PubMed  Google Scholar 

  157. Korzeniewski N, Treat B, Duensing S. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer. 2011;10:61. Epub 2011/05/26.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Moody CA, Laimins LA. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 2009;5(10):e1000605. Epub 2009/10/03.

    PubMed Central  PubMed  Google Scholar 

  159. Nguyen CL, Munger K. Human papillomavirus E7 protein deregulates mitosis via an association with nuclear mitotic apparatus protein 1. J Virol. 2009;83(4):1700–7. Epub 2008/12/05.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Nguyen CL, McLaughlin-Drubin ME, Munger K. Delocalization of the microtubule motor Dynein from mitotic spindles by the human papillomavirus E7 oncoprotein is not sufficient for induction of multipolar mitoses. Cancer Res. 2008;68(21):8715–22. Epub 2008/11/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Spardy N, Covella K, Cha E, Hoskins EE, Wells SI, Duensing A, et al. Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res. 2009;69(17):7022–9. Epub 2009/08/27.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Talbert-Slagle K, DiMaio D. The bovine papillomavirus E5 protein and the PDGF beta receptor: it takes two to tango. Virology. 2009;384(2):345–51. Epub 2008/11/08.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Krawczyk E, Suprynowicz FA, Sudarshan SR, Schlegel R. Membrane orientation of the human papillomavirus type 16 E5 oncoprotein. J Virol. 2010;84(4):1696–703. Epub 2009/12/04.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Conrad M, Bubb VJ, Schlegel R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol. 1993;67(10):6170–8. Epub 1993/10/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Leechanachai P, Banks L, Moreau F, Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene. 1992;7(1):19–25. Epub 1992/01/01.

    CAS  PubMed  Google Scholar 

  166. Leptak C, Ramon y Cajal S, Kulke R, Horwitz BH, Riese 2nd DJ, Dotto GP, et al. Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol. 1991;65(12):7078–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 2010;70(7):2924–31. Epub 2010/03/25.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Straight SW, Herman B, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol. 1995;69(5):3185–92. Epub 1995/05/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Crusius K, Auvinen E, Steuer B, Gaissert H, Alonso A. The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp Cell Res. 1998;241(1):76–83. Epub 1998/06/20.

    CAS  PubMed  Google Scholar 

  170. Genther Williams SM, Disbrow GL, Schlegel R, Lee D, Threadgill DW, Lambert PF. Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res. 2005;65(15):6534–42. Epub 2005/08/03.

    CAS  PubMed  Google Scholar 

  171. Crusius K, Rodriguez I, Alonso A. The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes. 2000;20(1):65–9. Epub 2000/04/15.

    CAS  PubMed  Google Scholar 

  172. Tsao YP, Li LY, Tsai TC, Chen SL. Human papillomavirus type 11 and 16 E5 represses p21(WafI/SdiI/CipI) gene expression in fibroblasts and keratinocytes. J Virol. 1996;70(11):7535–9. Epub 1996/11/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Pedroza-Saavedra A, Lam EW, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. The human papillomavirus type 16 E5 oncoprotein synergizes with EGF-receptor signaling to enhance cell cycle progression and the down-regulation of p27(Kip1). Virology. 2010;400(1):44–52. Epub 2010/02/11.

    CAS  PubMed  Google Scholar 

  174. Kanodia S, Fahey LM, Kast WM. Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets. 2007;7(1):79–89. Epub 2007/02/20.

    CAS  PubMed  Google Scholar 

  175. Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25(2):215–22. Epub 2012/04/12.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Fausch SC, Da Silva DM, Rudolf MP, Kast WM. Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol. 2002;169(6):3242–9. Epub 2002/09/10.

    CAS  PubMed  Google Scholar 

  177. Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol. 2005;79(23):14852–62. Epub 2005/11/12.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Matthews K, Leong CM, Baxter L, Inglis E, Yun K, Backstrom BT, et al. Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J Virol. 2003;77(15):8378–85. Epub 2003/07/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Caberg JH, Hubert PM, Begon DY, Herfs MF, Roncarati PJ, Boniver JJ, et al. Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis. 2008;29(7):1441–7. Epub 2008/06/21.

    CAS  PubMed  Google Scholar 

  180. Hellner K, Munger K. Human papillomaviruses as therapeutic targets in human cancer. J Clin Oncol. 2011;29(13):1785–94. Epub 2011/01/12.

    PubMed Central  PubMed  Google Scholar 

  181. Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 1998;12(13):2061–72. Epub 1998/07/03.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology. 1999;259(2):305–13. Epub 1999/07/02.

    CAS  PubMed  Google Scholar 

  183. Barnard P, Payne E, McMillan NA. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology. 2000;277(2):411–9. Epub 2000/11/18.

    CAS  PubMed  Google Scholar 

  184. DeCarlo CA, Severini A, Edler L, Escott NG, Lambert PF, Ulanova M, et al. IFN-kappa, a novel type I IFN, is undetectable in HPV-positive human cervical keratinocytes. Lab Invest. 2010;90(10):1482–91. Epub 2010/05/19.

    CAS  PubMed  Google Scholar 

  185. Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, et al. Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells. Cancer Res. 2009;69(22):8718–25. Epub 2009/11/06.

    CAS  PubMed  Google Scholar 

  186. Reiser J, Hurst J, Voges M, Krauss P, Munch P, Iftner T, et al. High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J Virol. 2011;85(21):11372–80. Epub 2011/08/19.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Dell’oste V, Azzimonti B, Mondini M, De Andrea M, Borgogna C, Mesturini R, et al. Altered expression of UVB-induced cytokines in human papillomavirus-immortalized epithelial cells. J Gen Virol. 2008;89(Pt 10):2461–6. Epub 2008/09/18.

    PubMed  Google Scholar 

  188. Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene. 1999;18(42):5727–37. Epub 1999/10/19.

    CAS  PubMed  Google Scholar 

  189. Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem. 2000;275(10):6764–9.

    CAS  PubMed  Google Scholar 

  190. Perea SE, Massimi P, Banks L. Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int J Mol Med. 2000;5(6):661–6. Epub 2000/05/17.

    CAS  PubMed  Google Scholar 

  191. Lace MJ, Anson JR, Haugen TH, Turek LP. Interferon regulatory factor (IRF)-2 activates the HPV-16 E6-E7 promoter in keratinocytes. Virology. 2010;399(2):270–9. Epub 2010/02/05.

    CAS  PubMed  Google Scholar 

  192. Zhou F, Leggatt GR, Frazer IH. Human papillomavirus 16 E7 protein inhibits interferon-gamma-mediated enhancement of keratinocyte antigen processing and T-cell lysis. FEBS J. 2011;278(6):955–63. Epub 2011/01/15.

    CAS  PubMed  Google Scholar 

  193. Kamio M, Yoshida T, Ogata H, Douchi T, Nagata Y, Inoue M, et al. SOCS1 [corrected] inhibits HPV-E7-mediated transformation by inducing degradation of E7 protein. Oncogene. 2004;23(17):3107–15. Epub 2004/03/17.

    CAS  PubMed  Google Scholar 

  194. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. 2007;178(5):3186–97. Epub 2007/02/22.

    CAS  PubMed  Google Scholar 

  195. Andersen JM, Al-Khairy D, Ingalls RR. Innate immunity at the mucosal surface: role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens. Biol Reprod. 2006;74(5):824–31. Epub 2006/01/20.

    CAS  PubMed  Google Scholar 

  196. Karim R, Meyers C, Backendorf C, Ludigs K, Offringa R, van Ommen GJ, et al. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One. 2011;6(3):e17848. Epub 2011/03/23.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Huang SM, McCance DJ. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol. 2002;76(17):8710–21. Epub 2002/08/07.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Ashrafi GH, Haghshenas MR, Marchetti B, O’Brien PM, Campo MS. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer. 2005;113(2):276–83. Epub 2004/09/24.

    CAS  PubMed  Google Scholar 

  199. Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, et al. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407(1):137–42. Epub 2010/09/04.

    CAS  PubMed  Google Scholar 

  200. Schapiro F, Sparkowski J, Adduci A, Suprynowicz F, Schlegel R, Grinstein S. Golgi alkalinization by the papillomavirus E5 oncoprotein. J Cell Biol. 2000;148(2):305–15. Epub 2000/01/29.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Ashrafi GH, Haghshenas M, Marchetti B, Campo MS. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer. 2006;119(9):2105–12. Epub 2006/07/11.

    CAS  PubMed  Google Scholar 

  202. Regan JA, Laimins LA. Bap31 is a novel target of the human papillomavirus E5 protein. J Virol. 2008;82(20):10042–51. Epub 2008/08/08.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Muto V, Stellacci E, Lamberti AG, Perrotti E, Carrabba A, Matera G, et al. Human papillomavirus type 16 E5 protein induces expression of beta interferon through interferon regulatory factor 1 in human keratinocytes. J Virol. 2011;85(10):5070–80. Epub 2011/03/11.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Munger Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spangle, J.M., Chen, A.A., Munger, K. (2014). Human Papillomavirus: Pathogenesis and Host Immune Response. In: Hudnall, S. (eds) Viruses and Human Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0870-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0870-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0869-1

  • Online ISBN: 978-1-4939-0870-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics