Skip to main content

Epstein–Barr Virus: Pathogenesis and Host Immune Response

  • Chapter
  • First Online:
Viruses and Human Cancer

Abstract

Epstein–Barr virus (EBV) is a human gamma-herpesvirus with a large double-stranded DNA genome (168–184 kbp) that encodes for nearly 100 genes. There are two closely related EBV subtypes, EBV-1 and EBV-2, which differ in genetic sequence, biological properties, and geographical distribution. The viral genome is composed of two terminal repeat units, five unique regions, and four internal repeat units. The genes can be broadly divided into latent genes and lytic genes. Latent genes ensure virus persistence in infected cells by maintaining virus copy number, inhibiting immune recognition, blocking apoptosis, and providing tonic growth signals to infected cells. Lytic genes are responsible for virus production, by switching on the replication program, blocking apoptosis, inhibiting immune recognition, activating infected cells, and producing virion structural components. The mature enveloped virion is composed of a dense DNA core, icosahedral capsid, amorphous tegument protein, and a phospholipid envelope. EBV infection is transmitted from human to human through saliva. After a brief phase of lytic infection within oral epithelium, EBV infects naïve tonsillar B cells by binding of the EBV envelope glycoprotein gp350/220 to the B-cell CR2/CD21 receptor. After intracellular release from the capsid the linear DNA molecule forms a closed loop by fusion within the terminal regions. In latency, several copies of the circular episomal form remain in the nucleus, with host cell DNA polymerase-dependent replication limited to the cellular S phase, a feature that ensures partitioning of virus to all daughter cells. Under the influence of EBV latent transforming genes, infected B cells rapidly proliferate within lymphoid tissues until checked by a vigorous anti-viral immune response comprised of EBV-specific antibodies, EBV-specific cytotoxic T cells, and NK cells. Some EBV-infected B cells mature into plasma cells and switch from latency to lytic phase with end-stage virus replication. Following this initial phase, latent-infected B cells persist by severely limiting expression of EBV proteins, thus avoiding immune recognition. After recovery from primary infection, these quiescent long-lived EBV-infected memory B cells freely recirculate in blood and, in the healthy host, largely remain in a tightly latent state, with low-level lytic replication associated with plasmacytic differentiation. In the asymptomatic virus carrier state, continuous low-level lytic replication in the oral region leads to shedding of virus in saliva and persistence of an anti-viral immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee YS, Tanaka A, Lau RY, Nonoyama M, Rabin H. Comparative studies of herpesvirus papio (baboon herpesvirus) DNA and Epstein-Barr virus DNA. J Gen Virol. 1980;51:245–53.

    CAS  PubMed  Google Scholar 

  2. Böcker JF, Tiedemann KH, Bornkamm GW, zur Hausen H. Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology. 1980;101:291–5.

    PubMed  Google Scholar 

  3. Kieff E, Dambaugh T, Heller M, et al. The biology and chemistry of Epstein-Barr virus. J Infect Dis. 1982;146:506–17.

    CAS  PubMed  Google Scholar 

  4. Lapin BA, Timanovskaya VV, Yakovleva LA. Herpesvirus HVMA: a new representative in the group of the EBV-like B-lymphotropic herpesviruses of primates. Haematol Blood Transfus. 1985;29:312–3.

    CAS  PubMed  Google Scholar 

  5. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.

    CAS  PubMed  Google Scholar 

  6. Diehl V, Henle G, Henle W, Kohn G. Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J Virol. 1968;2:663–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Henle G, Henle W, Diehl V. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci U S A. 1968;59:94–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Weiss L, Movahed L. In situ demonstration of Epstein-Barr viral genomes in viral-associated B cell lymphoproliferations. Am J Pathol. 1989;134:651–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Su IJ, Hsieh HC. Clinicopathological spectrum of Epstein-Barr virus-associated T cell malignancies. Leuk Lymphoma. 1992;7:47–53.

    CAS  PubMed  Google Scholar 

  10. Shimazaki K, Ohshima K, Haraoka S, Suzumiya J, Nakamura N, Kikuchi M. Accessory cell tumour: a clinicopathological study of 16 aggressive tumours containing EBV-positive Hodgkin and Reed-Sternberg-like giant cells. Histopathology. 2002;40:12–21.

    PubMed  Google Scholar 

  11. Purgina B, Rao UN, Miettinen M, Pantanowitz L. AIDS-related EBV-associated smooth muscle tumors: a review of 64 published cases. Patholog Res Int. 2011;2011:561548.

    PubMed Central  PubMed  Google Scholar 

  12. Schiødt M, Greenspan D, Daniels TE, Greenspan JS. Clinical and histologic spectrum of oral hairy leukoplakia. Oral Surg Oral Med Oral Pathol. 1987;64:716–20.

    PubMed  Google Scholar 

  13. Okano M, Gross TG. Epstein-Barr virus-associated hemophagocytic syndrome and fatal infectious mononucleosis. Am J Hematol. 1996;53:111–5.

    CAS  PubMed  Google Scholar 

  14. Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol. 2006;16:251–61.

    PubMed  Google Scholar 

  15. Epstein MA, Achong BG, Pope JH. Virus in cultured lymphoblasts from a New Guinea Burkitt lymphoma. Br Med J. 1967;2:290–1.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Pope JH, Achong BG, Epstein MA, Biddulph J. Burkitt lymphoma in New Guinea: establishment of a line of lymphoblasts in vitro and description of their fine structure. J Natl Cancer Inst. 1967;39:933–45.

    CAS  PubMed  Google Scholar 

  17. Pope JH, Scott W, Moss DJ. Human lymphoid cell transformation by Epstein-Barr virus. Nat New Biol. 1973;246:140–1.

    CAS  PubMed  Google Scholar 

  18. Hudnall SD, Ge Y, Wei L, Yang NP, Wang HQ, Chen T. Distribution and phenotype of Epstein-Barr virus-infected cells in human pharyngeal tonsils. Mod Pathol. 2005;18:519–27.

    PubMed  Google Scholar 

  19. Bornkamm G, Delius H, Zimber U, Hudewentz J, Epstein M. Comparison of Epstein-Barr virus strains of different origin by analysis of the viral DNAs. J Virol. 1980;35:603–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Baer R, Bankier AT, Biggin MD, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310:207–11.

    CAS  PubMed  Google Scholar 

  21. Lin Z, Wang X, Strong MJ, et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol. 2013;87:1172–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Alfieri C, Birkenbach M, Kieff E. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology. 1991;181:595–608.

    CAS  PubMed  Google Scholar 

  23. Yates JL, Guan N. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol. 1991;65:483–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Sato H, Takimoto T, Tanaka S, Tanaka J, Raab-Traub N. Concatameric replication of Epstein-Barr virus: structure of the termini in virus-producer and newly transformed cell lines. J Virol. 1990;64:5295–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Tsurumi T, Fujita M, Kudoh A. Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol. 2005;15:3–15.

    CAS  PubMed  Google Scholar 

  26. Hammerschmidt W, Sugden B. Replication of Epstein-Barr viral DNA. Cold Spring Harb Perspect Biol. 2013;5:a013029.

    PubMed  Google Scholar 

  27. Sixbey JW, Shirley P, Chesney PJ, Buntin DM, Resnick L. Detection of a second widespread strain of Epstein-Barr virus. Lancet. 1989;2:761–5.

    CAS  PubMed  Google Scholar 

  28. Apolloni A, Sculley TB. Detection of A-type and B-type Epstein-Barr virus in throat washings and lymphocytes. Virology. 1994;202:978–81.

    CAS  PubMed  Google Scholar 

  29. Sculley TB, Apolloni A, Hurren L, Moss DJ, Cooper DA. Coinfection with A- and B-type Epstein-Barr virus in human immunodeficiency virus-positive subjects. J Infect Dis. 1990;162:643–8.

    CAS  PubMed  Google Scholar 

  30. Peh SC, Kim LH, Poppema S. Frequent presence of subtype A virus in Epstein-Barr virus-associated malignancies. Pathology. 2002;34:446–50.

    PubMed  Google Scholar 

  31. Walling DM, Flaitz CM, Nichols CM, Hudnall SD, Adler-Storthz K. Persistent productive Epstein-Barr virus replication in normal epithelial cells in vivo. J Infect Dis. 2001;184: 1499–507.

    CAS  PubMed  Google Scholar 

  32. Herrmann K, Frangou P, Middeldorp J, Niedobitek G. Epstein-Barr virus replication in tongue epithelial cells. J Gen Virol. 2002;83:2995–8.

    CAS  PubMed  Google Scholar 

  33. Frangou P, Buettner M, Niedobitek G. Epstein-Barr virus (EBV) infection in epithelial cells in vivo: rare detection of EBV replication in tongue mucosa but not in salivary glands. J Infect Dis. 2005;191:238–42.

    PubMed  Google Scholar 

  34. Kalla M, Schmeinck A, Bergbauer M, Pich D, Hammerschmidt W. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci U S A. 2010;107:850–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Seto E, Moosmann A, Grömminger S, Walz N, Grundhoff A, Hammerschmidt W. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 2010;6:e1001063.

    PubMed Central  PubMed  Google Scholar 

  36. Tierney R, Kirby H, Nagra J, Desmond J, Bell A, Rickinson A. Methylation of transcription factor binding sites in the Epstein-Barr virus latent cycle promoter Wp coincides with promoter down-regulation during virus-induced B-cell transformation. J Virol. 2000;74: 10468–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Tierney RJ, Steven N, Young LS, Rickinson AB. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol. 1994;68:7374–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.

    CAS  PubMed  Google Scholar 

  39. De Paschale M, Clerici P. Serological diagnosis of Epstein-Barr virus infection: problems and solutions. World J Virol. 2012;1:31–43.

    PubMed Central  PubMed  Google Scholar 

  40. Chijioke O, Azzi T, Nadal D, Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013;94(6):1185–90.

    PubMed  Google Scholar 

  41. Babcock GJ, Hochberg D, Thorley-Lawson AD. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 2000;13:497–506.

    CAS  PubMed  Google Scholar 

  42. Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 1985;313:812–5.

    CAS  PubMed  Google Scholar 

  43. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9:405–11.

    CAS  PubMed  Google Scholar 

  44. Gires O, Kohlhuber F, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 1999;18:3064–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.

    CAS  PubMed  Google Scholar 

  46. Babcock GJ, Thorley-Lawson DA. Tonsillar memory B cells, latently infected with Epstein-Barr virus, express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc Natl Acad Sci U S A. 2000;97:12250–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Thorley-Lawson DA, Babcock GJ. A model for persistent infection with Epstein-Barr virus: the stealth virus of human B cells. Life Sci. 1999;65:1433–53.

    CAS  PubMed  Google Scholar 

  48. Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A. 2004;101:239–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Anagnostopoulos I, Hummel M, Kreschel C, Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995;85:744–50.

    CAS  PubMed  Google Scholar 

  50. Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005;79:1296–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Tan LC, Gudgeon N, Annels NE, et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol. 1999;162:1827–35.

    CAS  PubMed  Google Scholar 

  52. Kieff E, Rickinson A. Epstein–Barr virus and its replication, Fields Virolog. Lippincott Williams & Wilkins. 2007.

    Google Scholar 

  53. Tomkinson B, Robertson E, Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol. 1993;67: 2014–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wang F, Kikutani H, Tsang SF, Kishimoto T, Kieff E. Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J Virol. 1991;65:4101–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993;90:9150–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Humme S, Reisbach G, Feederle R, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A. 2003;100:10989–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Rowe M, Lear AL, Croom-Carter D, Davies AH, Rickinson AB. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol. 1992;66:122–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol. 1997;71:4882–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Glickman JN, Howe JG, Steitz JA. Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol. 1988;62:902–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Houmani JL, Davis CI, Ruf IK. Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol. 2009;83:9844–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Toczyski DP, Steitz JA. EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). EMBO J. 1991;10:459–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Toczyski DP, Matera AG, Ward DC, Steitz JA. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci U S A. 1994;91:3463–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lerner MR, Andrews NC, Miller G, Steitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1981;78:805–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Fok V, Friend K, Steitz JA. Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol. 2006;173:319–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Harley JB, Scofield RH, Reichlin M. Anti-Ro in Sjögren’s syndrome and systemic lupus erythematosus. Rheum Dis Clin North Am. 1992;18:337–58.

    CAS  PubMed  Google Scholar 

  66. Yajima M, Kanda T, Takada K. Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol. 2005;79:4298–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Iwakiri D, Eizuru Y, Tokunaga M, Takada K. Autocrine growth of Epstein-Barr virus-positive gastric carcinoma cells mediated by an Epstein-Barr virus-encoded small RNA. Cancer Res. 2003;63:7062–7.

    CAS  PubMed  Google Scholar 

  68. Iwakiri D, Sheen TS, Chen JY, Huang DP, Takada K. Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene. 2005;24:1767–73.

    CAS  PubMed  Google Scholar 

  69. Samanta M, Iwakiri D, Takada K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene. 2008;27:4150–60.

    CAS  PubMed  Google Scholar 

  70. Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J. 2002;21: 954–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ruf IK, Lackey KA, Warudkar S, Sample JT. Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol. 2005;79:14562–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Zetterberg H, Stenglein M, Jansson A, Ricksten A, Rymo L. Relative levels of EBNA1 gene transcripts from the C/W, F and Q promoters in Epstein-Barr virus-transformed lymphoid cells in latent and lytic stages of infection. J Gen Virol. 1999;80(Pt 2):457–66.

    CAS  PubMed  Google Scholar 

  73. Middleton T, Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol. 1994;68:4067–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A. 1997;94:12616–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Wilson JB, Bell JL, Levine AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996;15:3117–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kennedy G, Komano J, Sugden B. Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A. 2003;100:14269–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Abbot SD, Rowe M, Cadwallader K, et al. Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol. 1990;64:2126–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Ling PD, Hsieh JJ, Ruf IK, Rawlins DR, Hayward SD. EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol. 1994;68:5375–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73:4481–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang L, Grossman SR, Kieff E. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A. 2000;97:430–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Strobl LJ, Höfelmayr H, Marschall G, Brielmeier M, Bornkamm GW, Zimber-Strobl U. Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J Virol. 2000;74:1727–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Gordadze AV, Peng R, Tan J, et al. Notch1IC partially replaces EBNA2 function in B cells immortalized by Epstein-Barr virus. J Virol. 2001;75:5899–912.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Robertson ES, Lin J, Kieff E. The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J Virol. 1996;70:3068–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG. EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A. 1993;90:5455–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E. Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol. 1990;64:3407–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Allday MJ, Crawford DH, Thomas JA. Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol. 1993;74(Pt 3):361–9.

    CAS  PubMed  Google Scholar 

  87. Lin J, Johannsen E, Robertson E, Kieff E. Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol. 2002;76:232–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Parker GA, Crook T, Bain M, Sara EA, Farrell PJ, Allday MJ. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene. 1996;13:2541–9.

    CAS  PubMed  Google Scholar 

  89. Harada S, Kieff E. Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol. 1997;71:6611–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Izumi KM, Kaye KM, Kieff ED. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1997;94:1447–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Dawson CW, Tramountanis G, Eliopoulos AG, Young LS. Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem. 2003;278:3694–704.

    CAS  PubMed  Google Scholar 

  92. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22:5108–21.

    CAS  PubMed  Google Scholar 

  93. Dirmeier U, Hoffmann R, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene. 2005;24:1711–7.

    CAS  PubMed  Google Scholar 

  94. Dudziak D, Kieser A, Dirmeier U, et al. Latent membrane protein 1 of Epstein-Barr virus induces CD83 by the NF-kappaB signaling pathway. J Virol. 2003;77:8290–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992;267:24157–60.

    CAS  PubMed  Google Scholar 

  96. Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 1999;274: 16085–96.

    CAS  PubMed  Google Scholar 

  97. Eliopoulos AG, Blake SM, Floettmann JE, Rowe M, Young LS. Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol. 1999;73:1023–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ. Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell. 1990;61:1315–27.

    CAS  PubMed  Google Scholar 

  99. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A. 1998;95:11963–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A. 1994;91:772–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Dykstra ML, Longnecker R, Pierce SK. Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity. 2001;14:57–67.

    CAS  PubMed  Google Scholar 

  102. Stewart S, Dawson CW, Takada K, et al. Epstein-Barr virus-encoded LMP2A regulates viral and cellular gene expression by modulation of the NF-kappaB transcription factor pathway. Proc Natl Acad Sci U S A. 2004;101:15730–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Rechsteiner MP, Berger C, Zauner L, et al. Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol. 2008;82:1739–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Edwards RH, Marquitz AR, Raab-Traub N. Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol. 2008;82:9094–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Brooks LA, Lear AL, Young LS, Rickinson AB. Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol. 1993;67:3182–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Gilligan KJ, Rajadurai P, Lin JC, et al. Expression of the Epstein-Barr virus BamHI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. J Virol. 1991;65:6252–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Thornburg NJ, Kusano S, Raab-Traub N. Identification of Epstein-Barr virus RK-BARF0-interacting proteins and characterization of expression pattern. J Virol. 2004;78:12848–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Marquitz AR, Raab-Traub N. The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol. 2012;22:166–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yamamoto T, Iwatsuki K. Diversity of Epstein-Barr virus BamHI-A rightward transcripts and their expression patterns in lytic and latent infections. J Med Microbiol. 2012;61:1445–53.

    CAS  PubMed  Google Scholar 

  110. Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science. 2004;304:734–6.

    CAS  PubMed  Google Scholar 

  111. Vereide DT, Seto E, Chiu YF, et al. Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene. 2014;33(10):1258–64.

    CAS  PubMed  Google Scholar 

  112. Feederle R, Linnstaedt SD, Bannert H, et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 2011;7:e1001294.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Kusano S, Raab-Traub N. An Epstein-Barr virus protein interacts with Notch. J Virol. 2001;75:384–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T. Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res. 2000;60:5584–8.

    CAS  PubMed  Google Scholar 

  115. zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 2000;60:2745–8.

    PubMed  Google Scholar 

  116. Fiorini S, Ooka T. Secretion of Epstein-Barr virus-encoded BARF1 oncoprotein from latently infected B cells. Virol J. 2008;5:70.

    PubMed Central  PubMed  Google Scholar 

  117. Guo X, Sheng W, Zhang Y. [Malignant transformation of monkey kidney epithelial cell induced by EBV BARF1 gene and TPA]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2001;15:321–3.

    CAS  PubMed  Google Scholar 

  118. Hoebe EK, Hutajulu SH, van Beek J, et al. Purified hexameric Epstein-Barr virus-encoded BARF1 protein for measuring anti-BARF1 antibody responses in nasopharyngeal carcinoma patients. Clin Vaccine Immunol. 2011;18:298–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Chang MS, Kim DH, Roh JK, et al. Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric carcinoma cells through regulation of NF-κB. J Virol. 2013;87:10515–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Klein E, Teramoto N, Gogolák P, Nagy N, Björkholm M. LMP-1, the Epstein-Barr virus-encoded oncogene with a B cell activating mechanism similar to CD40. Immunol Lett. 1999;68:147–54.

    CAS  PubMed  Google Scholar 

  121. Feederle R, Kost M, Baumann M, et al. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 2000;19:3080–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Woellmer A, Arteaga-Salas JM, Hammerschmidt W. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression. PLoS Pathog. 2012;8:e1002902.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Zhang Q, Gutsch D, Kenney S. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol. 1994;14:1929–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Dreyfus DH, Nagasawa M, Pratt JC, Kelleher CA, Gelfand EW. Inactivation of NF-kappaB by EBV BZLF-1-encoded ZEBRA protein in human T cells. J Immunol. 1999;163:6261–8.

    CAS  PubMed  Google Scholar 

  125. Cook ID, Shanahan F, Farrell PJ. Epstein-Barr virus SM protein. Virology. 1994;205: 217–27.

    CAS  PubMed  Google Scholar 

  126. Ruvolo V, Gupta AK, Swaminathan S. Epstein-Barr virus SM protein interacts with mRNA in vivo and mediates a gene-specific increase in cytoplasmic mRNA. J Virol. 2001;75: 6033–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Altmann M, Hammerschmidt W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 2005;3:e404.

    PubMed Central  PubMed  Google Scholar 

  128. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A. 1984;81:4510–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Tugizov SM, Berline JW, Palefsky JM. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 2003;9:307–14.

    CAS  PubMed  Google Scholar 

  130. Pearson GR, Luka J, Petti L, et al. Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology. 1987;160:151–61.

    CAS  PubMed  Google Scholar 

  131. Hayes DP, Brink AA, Vervoort MB, Middeldorp JM, Meijer CJ, van den Brule AJ. Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases. Mol Pathol. 1999;52:97–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Strockbine LD, Cohen JI, Farrah T, et al. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol. 1998;72:4015–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Packham G, Economou A, Rooney CM, Rowe DT, Farrell PJ. Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol. 1990;64:2110–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Marshall WL, Yim C, Gustafson E, et al. Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol. 1999;73:5181–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Niiro H, Otsuka T, Abe M, et al. Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res. 1992;11:209–14.

    CAS  PubMed  Google Scholar 

  136. Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol. 2000;54:19–48.

    CAS  PubMed  Google Scholar 

  137. Landais E, Saulquin X, Houssaint E. The human T cell immune response to Epstein-Barr virus. Int J Dev Biol. 2005;49:285–92.

    CAS  PubMed  Google Scholar 

  138. Rickinson A, Kieff E. Epstein Barr Virus, Fields Virology. Lippincott Williams & Wilkins. 2007.

    Google Scholar 

  139. Evans AS, Niederman JC. EBV-IgA and new heterophile antibody tests in diagnosis of infectious mononucleosis. Am J Clin Pathol. 1982;77:555–60.

    CAS  PubMed  Google Scholar 

  140. Henle G, Henle W. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer. 1976;17:1–7.

    CAS  PubMed  Google Scholar 

  141. Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB. Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med. 2002;195:893–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Steven NM, Annels NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med. 1997;185:1605–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Steven NM, Leese AM, Annels NE, Lee SP, Rickinson AB. Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med. 1996;184:1801–13.

    CAS  PubMed  Google Scholar 

  144. Callan MF, Tan L, Annels N, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med. 1998;187: 1395–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Long HM, Chagoury OL, Leese AM, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210:933–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Amyes E, Hatton C, Montamat-Sicotte D, et al. Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med. 2003;198:903–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Woodberry T, Suscovich TJ, Henry LM, et al. Differential targeting and shifts in the immunodominance of Epstein-Barr virus-specific CD8 and CD4 T cell responses during acute and persistent infection. J Infect Dis. 2005;192:1513–24.

    CAS  PubMed  Google Scholar 

  148. Mautner J, Bornkamm GW. The role of virus-specific CD4+ T cells in the control of Epstein-Barr virus infection. Eur J Cell Biol. 2012;91:31–5.

    CAS  PubMed  Google Scholar 

  149. Leen A, Meij P, Redchenko I, et al. Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol. 2001;75:8649–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Long HM, Haigh TA, Gudgeon NH, et al. CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol. 2005;79:4896–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nature Reviews Cancer 2004;4:757–768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. David Hudnall M.D., F.C.A.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hudnall, S.D. (2014). Epstein–Barr Virus: Pathogenesis and Host Immune Response. In: Hudnall, S. (eds) Viruses and Human Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0870-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0870-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0869-1

  • Online ISBN: 978-1-4939-0870-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics