Skip to main content

Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Clinical Features of Related Cancer

  • Chapter
  • First Online:
Viruses and Human Cancer

Abstract

KSHV is the cause of Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and a variant of multicentric Castleman’s disease (MCD). KSHV epidemiology varies by geography, being common in sub-Saharan Africa, less so in the Mediterranean, and infrequent in the USA and Northern Europe, except amongst men who have sex with men (MSM); it is also influenced by environmental factors and host genetics. Transmission is primarily via saliva, and is likely nonsexual except in MSMs. The main known risk factor for acquisition and transmission is HIV infection.

KS a polyclonal multifocal disease of endothelial origin, of which there exist four clinic-epidemiological variants. Classic KS affects typically elderly men of Mediterranean descent. Endemic KS occurs in younger adult and children in sub-Saharan Africa. Iatrogenic KS presents in transplant recipient. Epidemic KS is the most frequent AIDS-associated malignancy. PEL is a rare type of non-Hodgkin lymphoma (NHL) presenting in AIDS patients. KSHV-associated MCD is a very rare lymphoproliferative diseases occurring in HIV infection. Advances in understanding of pathogenesis of KSHV-associated malignancies have recently brought to light novel therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao SJ, et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi’s sarcoma. Nat Med. 1996;2(8):925–8.

    CAS  PubMed  Google Scholar 

  2. Wawer MJ, et al. Prevalence of Kaposi sarcoma-associated herpesvirus compared with selected sexually transmitted diseases in adolescents and young adults in rural Rakai District, Uganda. Sex Transm Dis. 2001;28(2):77–81.

    CAS  PubMed  Google Scholar 

  3. Newton R, et al. The sero-epidemiology of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in adults with cancer in Uganda. Int J Cancer. 2003;103(2):226–32.

    CAS  PubMed  Google Scholar 

  4. Hladik W, et al. Kaposi’s sarcoma in Uganda: risk factors for human herpesvirus 8 infection among blood donors. J Acquir Immune Defic Syndr. 2003;33(2):206–10.

    PubMed  Google Scholar 

  5. Baeten JM, et al. Correlates of human herpesvirus 8 seropositivity among heterosexual men in Kenya. AIDS. 2002;16(15):2073–8.

    PubMed  Google Scholar 

  6. Lavreys L, et al. Human herpesvirus 8: seroprevalence and correlates in prostitutes in Mombasa, Kenya. J Infect Dis. 2003;187(3):359–63.

    PubMed  Google Scholar 

  7. Klaskala W, et al. Epidemiological characteristics of human herpesvirus-8 infection in a large population of antenatal women in Zambia. J Med Virol. 2005;75(1):93–100.

    CAS  PubMed  Google Scholar 

  8. Mbulaiteye SM, et al. Human herpesvirus 8 infection within families in rural Tanzania. J Infect Dis. 2003;187(11):1780–5.

    PubMed  Google Scholar 

  9. Engels EA, et al. Latent class analysis of human herpesvirus 8 assay performance and infection prevalence in sub-saharan Africa and Malta. Int J Cancer. 2000;88(6):1003–8.

    CAS  PubMed  Google Scholar 

  10. Whitby D, et al. Genotypic characterization of Kaposi’s sarcoma-associated herpesvirus in asymptomatic infected subjects from isolated populations. J Gen Virol. 2004;85(Pt 1):155–63.

    CAS  PubMed  Google Scholar 

  11. DeSantis SM, et al. Demographic and immune correlates of human herpesvirus 8 seropositivity in Malawi, Africa. Int J Infect Dis. 2002;6(4):266–71.

    PubMed  Google Scholar 

  12. Sitas F, et al. Antibodies against human herpesvirus 8 in black South African patients with cancer. N Engl J Med. 1999;340(24):1863–71.

    CAS  PubMed  Google Scholar 

  13. Dedicoat M, et al. Mother-to-child transmission of human herpesvirus-8 in South Africa. J Infect Dis. 2004;190(6):1068–75.

    PubMed  Google Scholar 

  14. Malope BI, et al. Transmission of Kaposi sarcoma-associated herpesvirus between mothers and children in a South African population. J Acquir Immune Defic Syndr. 2007;44(3): 351–5.

    PubMed  Google Scholar 

  15. Collenberg E, et al. Seroprevalence of six different viruses among pregnant women and blood donors in rural and urban Burkina Faso: a comparative analysis. J Med Virol. 2006;78(5): 683–92.

    PubMed  Google Scholar 

  16. Volpi A, et al. Correlates of human herpes virus-8 and herpes simplex virus type 2 infections in Northern Cameroon. J Med Virol. 2004;74(3):467–72.

    CAS  PubMed  Google Scholar 

  17. de Sanjose S, et al. Geographic variation in the prevalence of kaposi sarcoma-associated herpesvirus and risk factors for transmission. J Infect Dis. 2009;199(10):1449–56.

    PubMed  Google Scholar 

  18. Whitby D, et al. Human herpesvirus 8 seroprevalence in blood donors and lymphoma patients from different regions of Italy. J Natl Cancer Inst. 1998;90(5):395–7.

    CAS  PubMed  Google Scholar 

  19. Calabro ML, et al. Seroprevalence of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 in several regions of Italy. J Hum Virol. 1998;1(3):207–13.

    CAS  PubMed  Google Scholar 

  20. Zavitsanou A, et al. Human herpesvirus 8 (HHV-8) infection in healthy urban employees from Greece: seroprevalence and associated factors. J Med Virol. 2007;79(5):591–6.

    PubMed  Google Scholar 

  21. Chironna M, et al. High human herpesvirus 8 seroprevalence in populations from Western Balkan countries. J Med Virol. 2006;78(7):933–7.

    PubMed  Google Scholar 

  22. Gambus G, et al. Prevalence and distribution of HHV-8 in different subpopulations, with and without HIV infection, in Spain. AIDS. 2001;15(9):1167–74.

    CAS  PubMed  Google Scholar 

  23. Serraino D, et al. Infection with human herpesvirus type 8 and Kaposi’s sarcoma in Sardinia. Infection. 2006;34(1):39–42.

    CAS  PubMed  Google Scholar 

  24. Cattani P, et al. Age-specific seroprevalence of Human Herpesvirus 8 in Mediterranean regions. Clin Microbiol Infect. 2003;9(4):274–9.

    CAS  PubMed  Google Scholar 

  25. Simpson GR, et al. Prevalence of Kaposi’s sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet. 1996;348(9035):1133–8.

    CAS  PubMed  Google Scholar 

  26. Marcelin AG, et al. Seroprevalence of human herpesvirus-8 in healthy subjects and patients with AIDS-associated and classical Kaposi’s sarcoma in France. AIDS. 1998;12(5):539–40.

    CAS  PubMed  Google Scholar 

  27. Preiser W, et al. Kaposi’s sarcoma-associated herpesvirus seroprevalence in selected German patients: evaluation by different test systems. Med Microbiol Immunol (Berl). 2001;190(3):121–7.

    CAS  Google Scholar 

  28. Wang GQ, et al. Higher prevalence of human herpesvirus 8 DNA sequence and specific IgG antibodies in patients with pemphigus in China. J Am Acad Dermatol. 2005;52(3 Pt 1): 460–7.

    PubMed  Google Scholar 

  29. Mei Q, et al. HHV-8 seroprevalence in blood donors and HIV-positive individuals in Shandong area, China. J Infect. 2007;55(1):89–90.

    PubMed  Google Scholar 

  30. Dilnur P, et al. Classic type of Kaposi’s sarcoma and human herpesvirus 8 infection in Xinjiang, China. Pathol Int. 2001;51(11):845–52.

    CAS  PubMed  Google Scholar 

  31. He F, et al. Human herpesvirus 8: serovprevalence and correlates in tumor patients from Xinjiang, China. J Med Virol. 2007;79(2):161–6.

    PubMed  Google Scholar 

  32. Fu B, et al. Seroprevalence of Kaposi’s sarcoma-associated herpesvirus and risk factors in Xinjiang, China. J Med Virol. 2009;81(8):1422–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Engels EA, et al. Risk factors for human herpesvirus 8 infection among adults in the United States and evidence for sexual transmission. J Infect Dis. 2007;196(2):199–207.

    PubMed  Google Scholar 

  34. Perez C, et al. Seroprevalence of human herpesvirus-8 in blood donors from different geographical regions of Argentina, Brazil, and Chile. J Med Virol. 2004;72(4):661–7.

    PubMed  Google Scholar 

  35. Biggar RJ, et al. Human herpesvirus 8 in Brazilian Amerindians: a hyperendemic population with a new subtype. J Infect Dis. 2000;181(5):1562–8.

    CAS  PubMed  Google Scholar 

  36. Cunha AM, et al. Increasing seroprevalence of human herpesvirus 8 (HHV-8) with age confirms HHV-8 endemicity in Amazon Amerindians from Brazil. J Gen Virol. 2005;86(Pt 9):2433–7.

    CAS  PubMed  Google Scholar 

  37. Mohanna S, et al. Human herpesvirus-8 in Peruvian blood donors: a population with hyperendemic disease? Clin Infect Dis. 2007;44(4):558–61.

    PubMed  Google Scholar 

  38. Kedes DH, et al. The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med. 1996;2(8):918–24.

    CAS  PubMed  Google Scholar 

  39. Pauk J, et al. Mucosal shedding of human herpesvirus 8 in men. N Engl J Med. 2000;343(19):1369–77.

    CAS  PubMed  Google Scholar 

  40. Whitby D, et al. Human herpesvirus 8: seroepidemiology among women and detection in the genital tract of seropositive women. J Infect Dis. 1999;179(1):234–6.

    CAS  PubMed  Google Scholar 

  41. Lampinen TM, et al. Detection of Kaposi’s sarcoma-associated herpesvirus in oral and genital secretions of Zimbabwean women. J Infect Dis. 2000;181(5):1785–90.

    CAS  PubMed  Google Scholar 

  42. Mbulaiteye SM, et al. Detection of kaposi sarcoma-associated herpesvirus DNA in saliva and buffy-coat samples from children with sickle cell disease in Uganda. J Infect Dis. 2004;190(8):1382–6.

    PubMed  Google Scholar 

  43. Teo CG. Conceptual emergence of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) as an oral herpesvirus. Adv Dent Res. 2006;19(1):85–90.

    CAS  PubMed  Google Scholar 

  44. Whitby D, et al. Detection of antibodies to human herpesvirus 8 in Italian children: evidence for horizontal transmission. Br J Cancer. 2000;82(3):702–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Plancoulaine S, et al. Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet. 2000;356(9235):1062–5.

    CAS  PubMed  Google Scholar 

  46. Minhas V, et al. Early childhood infection by human herpesvirus 8 in Zambia and the role of human immunodeficiency virus type 1 coinfection in a highly endemic area. Am J Epidemiol. 2008;168(3):311–20.

    PubMed Central  PubMed  Google Scholar 

  47. Mbulaiteye SM, et al. Water, socioeconomic factors, and human herpesvirus 8 infection in Ugandan children and their mothers. J Acquir Immune Defic Syndr. 2005;38(4):474–9.

    PubMed  Google Scholar 

  48. Wakeham K, et al. Parasite infection is associated with Kaposi’s sarcoma associated herpesvirus (KSHV) in Ugandan women. Infect Agent Cancer. 2011;6(1):15.

    PubMed Central  PubMed  Google Scholar 

  49. Martin JN, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med. 1998;338(14):948–54.

    CAS  PubMed  Google Scholar 

  50. Grulich AE, et al. Sexual behaviour and human herpesvirus 8 infection in homosexual men in Australia. Sex Health. 2005;2(1):13–8.

    PubMed  Google Scholar 

  51. Smith NA, et al. Serologic evidence of human herpesvirus 8 transmission by homosexual but not heterosexual sex. J Infect Dis. 1999;180(3):600–6.

    CAS  PubMed  Google Scholar 

  52. Martin JN. Diagnosis and epidemiology of human herpesvirus 8 infection. Semin Hematol. 2003;40(2):133–42.

    PubMed  Google Scholar 

  53. Martro E, et al. Risk factors for human Herpesvirus 8 infection and AIDS-associated Kaposi’s sarcoma among men who have sex with men in a European multicentre study. Int J Cancer. 2007;120(5):1129–35.

    CAS  PubMed  Google Scholar 

  54. Eltom MA, et al. Transmission of human herpesvirus 8 by sexual activity among adults in Lagos, Nigeria. AIDS. 2002;16(18):2473–8.

    PubMed  Google Scholar 

  55. Malope BI, et al. No evidence of sexual transmission of Kaposi’s sarcoma herpes virus in a heterosexual South African population. AIDS. 2008;22(4):519–26.

    PubMed  Google Scholar 

  56. Renwick N, et al. Risk factors for human herpesvirus 8 infection in a cohort of drug users in the Netherlands, 1985–1996. J Infect Dis. 2002;185(12):1808–12.

    PubMed  Google Scholar 

  57. Bernstein KT, et al. Factors associated with human herpesvirus type 8 infection in an injecting drug user cohort. Sex Transm Dis. 2003;30(3):199–204.

    PubMed  Google Scholar 

  58. Cannon MJ, et al. Blood-borne and sexual transmission of human herpesvirus 8 in women with or at risk for human immunodeficiency virus infection. N Engl J Med. 2001;344(9):637–43.

    CAS  PubMed  Google Scholar 

  59. Atkinson J, et al. Seroprevalence of human herpesvirus 8 among injection drug users in San Francisco. J Infect Dis. 2003;187(6):974–81.

    PubMed  Google Scholar 

  60. Mbulaiteye SM, et al. Human herpesvirus 8 infection and transfusion history in children with sickle-cell disease in Uganda. J Natl Cancer Inst. 2003;95(17):1330–5.

    PubMed  Google Scholar 

  61. Dollard SC, et al. Possible transmission of human herpesvirus-8 by blood transfusion in a historical United States cohort. Transfusion. 2005;45(4):500–3.

    PubMed  Google Scholar 

  62. Hladik W, et al. Transmission of human herpesvirus 8 by blood transfusion. N Engl J Med. 2006;355(13):1331–8.

    CAS  PubMed  Google Scholar 

  63. Rabkin CS, et al. Interassay correlation of human herpesvirus 8 serologic tests. HHV-8 Interlaboratory Collaborative Group. J Infect Dis. 1998;178(2):304–9.

    CAS  PubMed  Google Scholar 

  64. Pellett PE, et al. Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. Transfusion. 2003;43(9):1260–8.

    CAS  PubMed  Google Scholar 

  65. Lennette ET, Blackbourn DJ, Levy JA. Antibodies to human herpesvirus type 8 in the general population and in Kaposi’s sarcoma patients. Lancet. 1996;348(9031):858–61.

    CAS  PubMed  Google Scholar 

  66. Mbisa GL, et al. Detection of antibodies to Kaposi’s sarcoma-associated herpesvirus: a new approach using K8.1 ELISA and a newly developed recombinant LANA ELISA. J Immunol Methods. 2010;356(1–2):39–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Lam LL, et al. Highly sensitive assay for human herpesvirus 8 antibodies that uses a multiple antigenic peptide derived from open reading frame K8.1. J Clin Microbiol. 2002;40(2): 325–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Burbelo PD, et al. A four antigen mixture containing V-cyclin for serological screening of human herpesvirus 8 (HHV-8) infection. Clin Vaccine Immunol. 2009;16(5):621–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Uldrick TS, et al. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without Multicentric Castleman disease. Clin Infect Dis. 2010;51(3):350–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Riva G, et al. How I treat HHV8/KSHV-related diseases in posttransplant patients. Blood. 2012;120(20):4150–9.

    CAS  PubMed  Google Scholar 

  71. Kedes DH, Ganem D. Sensitivity of Kaposi’s sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. J Clin Invest. 1997;99(9):2082–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Ray A, et al. Sequence analysis of kaposi sarcoma-associated herpesvirus (KSHV) microRNAs in patients with multicentric Castleman disease and KSHV-associated inflammatory cytokine syndrome. J Infect Dis. 2012;205(11):1665–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Wu TT, et al. Vaccine prospect of Kaposi sarcoma-associated herpesvirus. Curr Opin Virol. 2012;2(4):482–8.

    CAS  PubMed  Google Scholar 

  74. Bouvard V, et al. A review of human carcinogens—part B: biological agents. Lancet Oncol. 2009;10(4):321–2.

    PubMed  Google Scholar 

  75. Knowles DM, et al. Lymphoid neoplasia associated with the acquired immunodeficiency syndrome (AIDS). The New York University Medical Center experience with 105 patients, 1981–1986. Ann Intern Med. 1988;108(5):744–53.

    CAS  PubMed  Google Scholar 

  76. Dupin N, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood. 2000;95(4):1406–12.

    CAS  PubMed  Google Scholar 

  77. Ziegler JL, Katongole-Mbidde E. Kaposi’s sarcoma in childhood: an analysis of 100 cases from Uganda and relationship to HIV infection. Int J Cancer. 1996;65(2):200–3.

    CAS  PubMed  Google Scholar 

  78. Penn I. Kaposi’s sarcoma in organ transplant recipients: report of 20 cases. Transplantation. 1979;27(1):8–11.

    CAS  PubMed  Google Scholar 

  79. Farge D. Kaposi’s sarcoma in organ transplant recipients. The Collaborative Transplantation Research Group of Ile de France. Eur J Med. 1993;2(6):339–43.

    CAS  PubMed  Google Scholar 

  80. Clemmesen J. Kaposi sarcoma in homosexual men: is it a new disease? Lancet. 1982;2(8288):51–2.

    CAS  PubMed  Google Scholar 

  81. Simonelli C, et al. Characterization of immunologic and virological parameters in HIV-infected patients with primary effusion lymphoma during antiblastic therapy and highly active antiretroviral therapy. Clin Infect Dis. 2005;40(7):1022–7.

    PubMed  Google Scholar 

  82. Simonelli C, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21(21):3948–54.

    PubMed  Google Scholar 

  83. Beral V, et al. AIDS-associated non-Hodgkin lymphoma. Lancet. 1991;337(8745):805–9.

    CAS  PubMed  Google Scholar 

  84. Levine AM, Gill PS. AIDS-related malignant lymphoma: clinical presentation and treatment approaches. Oncology (Williston Park). 1987;1(4):41–6.

    CAS  Google Scholar 

  85. Aboulafia DM. Human immunodeficiency virus-associated neoplasms: epidemiology, pathogenesis, and review of current therapy. Cancer Pract. 1994;2(4):297–306.

    CAS  PubMed  Google Scholar 

  86. Cote TR, et al. Non-Hodgkin’s lymphoma among people with AIDS: incidence, presentation and public health burden. AIDS/Cancer Study Group. Int J Cancer. 1997;73(5):645–50.

    CAS  PubMed  Google Scholar 

  87. Engels EA, et al. Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer. 2008;123(1):187–94.

    CAS  PubMed  Google Scholar 

  88. Tumwine LK, et al. Primary effusion lymphoma associated with Human Herpes Virus-8 and Epstein Barr virus in an HIV-infected woman from Kampala, Uganda: a case report. J Med Case Rep. 2011;5:60.

    PubMed Central  PubMed  Google Scholar 

  89. Cool CD, Bitter MA. The malignant lymphomas of Kenya: morphology, immunophenotype, and frequency of Epstein-Barr virus in 73 cases. Hum Pathol. 1997;28(9):1026–33.

    CAS  PubMed  Google Scholar 

  90. Powles T, et al. The role of immune suppression and HHV-8 in the increasing incidence of HIV-associated multicentric Castleman’s disease. Ann Oncol. 2009;20(4):775–9.

    CAS  PubMed  Google Scholar 

  91. Franceschi S, Geddes M. Epidemiology of classic Kaposi’s sarcoma, with special reference to mediterranean population. Tumori. 1995;81(5):308–14.

    CAS  PubMed  Google Scholar 

  92. Brooks JJ. Kaposi’s sarcoma: a reversible hyperplasia. Lancet. 1986;2(8519):1309–11.

    CAS  PubMed  Google Scholar 

  93. Oettle AG. Geographical and racial differences in the frequency of Kaposi’s sarcoma as evidence of environmental or genetic causes. In: Ackerman LV, Murray JF, editors. Symposium on Kaposi’s sarcoma. Karger: Basel; 1962.

    Google Scholar 

  94. Jelliffe DB, Cook J, Davies JN. Disseminated glandular Kaposi sarcoma in a Ugandan child. J Pediatr. 1962;61:452–5.

    CAS  PubMed  Google Scholar 

  95. Jones JL, et al. Incidence and trends in Kaposi’s sarcoma in the era of effective antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;24(3):270–4.

    CAS  PubMed  Google Scholar 

  96. Mosam A, et al. Increasing incidence of Kaposi’s sarcoma in black South Africans in KwaZulu-Natal, South Africa (1983–2006). Int J STD AIDS. 2009;20(8):553–6.

    CAS  PubMed  Google Scholar 

  97. Mbulaiteye SM, et al. Spectrum of cancers among HIV-infected persons in Africa: the Uganda AIDS-Cancer Registry Match Study. Int J Cancer. 2006;118(4):985–90.

    CAS  PubMed  Google Scholar 

  98. Maurer T, Ponte M, Leslie K. HIV-associated Kaposi’s sarcoma with a high CD4 count and a low viral load. N Engl J Med. 2007;357(13):1352–3.

    CAS  PubMed  Google Scholar 

  99. Unemori P, et al. Immunosenescence is associated with presence of Kaposi’s sarcoma in antiretroviral treated HIV infection. AIDS. 2013;27(11):1735–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Matolcsy A, et al. Immunoglobulin VH gene mutational analysis suggests that primary effusion lymphomas derive from different stages of B cell maturation. Am J Pathol. 1998;153(5):1609–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Klein U, et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood. 2003;101(10):4115–21.

    CAS  PubMed  Google Scholar 

  102. Carbone A, et al. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn. 2005;7(1):17–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Chadburn A, et al. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28(11):1401–16.

    PubMed  Google Scholar 

  104. Bower M, et al. Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi’s sarcoma. AIDS. 1999;13(15):2105–11.

    CAS  PubMed  Google Scholar 

  105. Biggar RJ, et al. Survival after cancer diagnosis in persons with AIDS. J Acquir Immune Defic Syndr. 2005;39(3):293–9.

    PubMed  Google Scholar 

  106. Krown SE. Highly active antiretroviral therapy in AIDS-associated Kaposi’s sarcoma: implications for the design of therapeutic trials in patients with advanced, symptomatic Kaposi’s sarcoma. J Clin Oncol. 2004;22(3):399–402.

    PubMed  Google Scholar 

  107. Letang E, et al. Kaposi sarcoma-associated immune reconstitution inflammatory syndrome: in need of a specific case definition. Clin Infect Dis. 2012;55(1):157–8.

    PubMed  Google Scholar 

  108. Letang E, et al. Immune reconstitution inflammatory syndrome associated with kaposi sarcoma: higher incidence and mortality in Africa than in the UK. AIDS. 2013;27(10): 1603–13.

    CAS  PubMed  Google Scholar 

  109. Stover KR, et al. A fatal case of kaposi sarcoma due to immune reconstitution inflammatory syndrome. Am J Med Sci. 2012;343(5):421–5.

    PubMed  Google Scholar 

  110. Gantt S, et al. The HIV protease inhibitor nelfinavir inhibits Kaposi’s sarcoma-associated herpesvirus replication in vitro. Antimicrob Agents Chemother. 2011;55(6):2696–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Gupta AK, et al. The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting proteasomal activity and inducing the unfolded protein response. Neoplasia. 2007;9(4):271–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Tulpule A, et al. Multicenter trial of low-dose paclitaxel in patients with advanced AIDS-related Kaposi sarcoma. Cancer. 2002;95(1):147–54.

    CAS  PubMed  Google Scholar 

  113. Evans SR, et al. Phase II evaluation of low-dose oral etoposide for the treatment of relapsed or progressive AIDS-related Kaposi’s sarcoma: an AIDS clinical trials group clinical study. J Clin Oncol. 2002;20(15):3236–41.

    CAS  PubMed  Google Scholar 

  114. Krown SE, et al. Interferon-alpha 2b with protease inhibitor-based antiretroviral therapy in patients with AIDS-associated Kaposi sarcoma—an AIDS malignancy consortium phase I trial. J Acquir Immune Defic Syndr. 2006;41(2):149–53.

    CAS  PubMed  Google Scholar 

  115. Little RF, et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol. 2000;18(13):2593–602.

    CAS  PubMed  Google Scholar 

  116. Little RF, et al. Activity of subcutaneous interleukin-12 in AIDS-related Kaposi sarcoma. Blood. 2006;107(12):4650–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Lim ST, et al. Primary effusion lymphoma: successful treatment with highly active antiretroviral therapy and rituximab. Ann Hematol. 2005;84(8):551–2.

    PubMed  Google Scholar 

  118. Siddiqi T, Joyce RM. A case of HIV-negative primary effusion lymphoma treated with bortezomib, pegylated liposomal doxorubicin, and rituximab. Clin Lymphoma Myeloma. 2008;8(5):300–4.

    CAS  PubMed  Google Scholar 

  119. Halfdanarson TR, et al. A non-chemotherapy treatment of a primary effusion lymphoma: durable remission after intracavitary cidofovir in HIV negative PEL refractory to chemotherapy. Ann Oncol. 2006;17(12):1849–50.

    CAS  PubMed  Google Scholar 

  120. Luppi M, et al. Treatment of herpesvirus associated primary effusion lymphoma with intracavity cidofovir. Leukemia. 2005;19(3):473–6.

    CAS  PubMed  Google Scholar 

  121. Klass CM, et al. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood. 2005;105(10):4028–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Coluzzi M, et al. The bloodsucking arthropod bite as possible cofactor in the transmission of human herpesvirus-8 infection and in the expression of Kaposi’s sarcoma disease. Parassitologia. 2002;44(1–2):123–9.

    CAS  PubMed  Google Scholar 

  123. Coluzzi M, et al. HHV-8 transmission via saliva to soothe blood-sucking arthropod bites. Br J Cancer. 2004;91(5):998–9; author reply 999.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Whitby D, et al. Reactivation of Kaposi’s sarcoma-associated herpesvirus by natural products from Kaposi’s sarcoma endemic regions. Int J Cancer. 2007;120(2):321–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Whitby Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Labo, N., Whitby, D. (2014). Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Clinical Features of Related Cancer. In: Hudnall, S. (eds) Viruses and Human Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0870-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0870-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0869-1

  • Online ISBN: 978-1-4939-0870-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics