Skip to main content

Abstract

Among the current molecular pharming approaches, seed-based expression offers particular advantages as heterologous proteins can be produced at high levels in a highly stable biomass that can also serve as an oral vaccine after either minimal or no processing. Therefore, seeds can be readily used as platforms for the production of low-cost vaccines that are environmentally friendly and easy to administer. In this chapter, various strategies that address expression of immunogens in seeds are presented. Seed-based approaches that have been undertaken to develop candidate vaccines against cholera, malaria, hepatitis B, and diarrhea are featured as examples of the promising potential of these approaches. Moreover, insights into the immunogenic properties of seed-based candidate vaccines are explored. In addition, efforts that prevent undesirable gene flow and release of transgene(s) into the environment are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatla SC, Kaushik V, Yadav MK (2010) Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv 28:293–300

    Article  CAS  PubMed  Google Scholar 

  • Boothe JG, Saponja JA, Parmenter DL (1997) Molecular farming in plants: oilseeds as vehicles for the production of pharmaceutical proteins. Drug Dev Res 42:172–181

    Article  CAS  Google Scholar 

  • Capuano F, Beaudoin F, Napier JA, Shewry PR (2007) Properties and exploitation of oleosins. Biotechnol Adv 25:203–206

    Article  CAS  PubMed  Google Scholar 

  • Chikwamba R, Cunnick J, Hathaway D, McMurray J, Mason H, Wang K (2002) A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT). Transgenic Res 5:479–493

    Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  Google Scholar 

  • Deckers HM, van Rooijen G, Boothe J, Goll J, Moloney MM, Schryvers AB, Alcantara J, Hutchins WA (2004) Immunogenic formulations comprising oil bodies. U.S. Patent 6761914 B2

    Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of ­biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2013) www.fao.org. Accessed 15 Jan 2014

  • Garg R, Tolbert M, Oakes JL, Clemente TE, Bost KL, Piller KJ (2007) Chloroplast targeting of FanC, the major antigenic subunit of Escherichia coli K99 fimbriae, in transgenic soybean. Plant Cell Rep 26:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Goossens A, Van Montagu M, Angenon G (1999) Co-introduction of an antisense gene for an endogenous seed storage protein can increase expression of a transgene in Arabidopsis thaliana seeds. FEBS Lett 456:160–164

    Article  CAS  PubMed  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant ­bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  CAS  PubMed  Google Scholar 

  • Hayden CA, Egelkrout EM, Moscoso AM, Enrique C, Keener TK, Jimenez-Flores R, Wong JC, Howard JA (2012) Production of highly concentrated, heat-stable hepatitis B surface antigen in maize. Plant Biotechnol J 10:979–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hills MJ, Hall L, Arnison PG, Good AG (2007) Genetic use restriction technologies (GURTs): strategies to impede transgene movement. Trends Plant Sci 12:177–183

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Kusnadi A, Nikolov Z, Howard JA (1999) Molecular farming of industrial proteins from transgenic maize. Adv Exp Med Biol 464:127–147

    Article  CAS  PubMed  Google Scholar 

  • Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  • Hudson LC, Seabolt BS, Odle J, Bost KL, Stahl CH, Piller KJ (2013) Sublethal staphylococcal enterotoxin B challenge model in pigs to evaluate protection following immunization with a soybean-derived vaccine. Clin Vaccine Immunol 20:24–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karaman S, Cunnick J, Wang K (2012) Expression of the cholera toxin B subunit (CT-B) in maize seeds and a combined mucosal treatment against cholera and traveler’s diarrhea. Plant Cell Rep 31:527–537

    Article  CAS  PubMed  Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879–894

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Twyman RM, Arcalis E, Stoger E (2012) Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J 7:1–11

    Article  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E (2001) Molecular control of transgene escape from genetically modified plants. Plant Sci 160:517–522

    Article  CAS  PubMed  Google Scholar 

  • Lamphear BJ, Streatfield SJ, Jilka JM, Brooks CA, Barker DK, Turner DD, Delaney DE, Garcia M, Wiggins B, Woodard SL, Hood EE, Tizard IR, Lawhorn B, Howard JA (2002) Delivery of subunit vaccines in maize seed. J Control Release 85:169–180

    Article  CAS  PubMed  Google Scholar 

  • Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004) A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine 22:2420–2424

    Article  CAS  PubMed  Google Scholar 

  • Lau O, Ng D, Chan W, Chang S, Sun S (2010) Production of the 42-kDa fragment of Plasmodium falciparum merozoite surface protein 1, a leading malaria vaccine antigen, in Arabidopsis thaliana seeds. Plant Biotechnol J 8:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci. USA, 89:11745–11749

    Google Scholar 

  • Ma J, Drake P, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  PubMed  Google Scholar 

  • Mihaliak CA, Webb S, Miller T, Fanton M, Kirk D, Cardineau G, Mason H, Walmsley A, Arntzen C, van Eck J (2005) Development of plant cell produced vaccines for animal health applications. In: Proceedings of the 108th annual meeting of the United States Animal Health Association, Greensboro, NC, USA, pp 158–163

    Google Scholar 

  • Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T (2007) Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine 25:1647–1657

    Article  CAS  PubMed  Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    Article  CAS  PubMed  Google Scholar 

  • Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, ­Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci USA 104:10986–10991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nojima J, Ishii-Katsuno R, Futai E, Sasagawa N, Watanabe Y, Yoshida T, Ishiura S (2011) Production of anti-amyloid β antibodies in mice fed rice expressing amyloid β. Biosci Biotechnol Biochem 75:396–400

    Article  CAS  PubMed  Google Scholar 

  • Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren J, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    Article  CAS  PubMed  Google Scholar 

  • Oszvald M, Kang T, Tomoskozi S, Jenes B, Kim T, Cha Y, Tamas L, Yang M (2008) Expression of cholera toxin B subunit in transgenic rice endosperm. Mol Biotechnol 40:261–268

    Article  CAS  PubMed  Google Scholar 

  • Parmenter DL, Boothe JG, van Rooijen GJH, Yeung EC, Moloney MM (1995) Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Piller KJ, Clemente TE, Jun SM, Petty CC, Sato S, Pascual DW, Bost KL (2005) Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. Planta 222:6–18

    Article  CAS  PubMed  Google Scholar 

  • Qian B, Shen H, Liang W, Guo X, Zhang C, Wang Y, Li G, Wu A, Cao K, Zhang D (2008) Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitopes expressed in rice seeds. Transgenic Res 17:621–631

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SR (2013) Protein bodies in nature and biotechnology. Mol Biotechnol 54:257–268

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Ma J, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Jilka JM, Hood EE, Turner DD, Bailey MR, Mayor JM, Woodard SL, Beifuss KK, Horn ME, Delaney DE, Tizard IR, Howard JA (2001) Plant-based vaccines: unique advantages. Vaccine 19:2742–2748

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EE, Howard JA (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815

    Article  CAS  PubMed  Google Scholar 

  • Tackaberry ES, Dudani AK, Prior F, Tocchi M, Sardana R, Altosaar I, Ganz PR (1999) Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine 17:3020–3029

    Article  CAS  PubMed  Google Scholar 

  • Tackaberry ES, Prior F, Bell M, Tocchi M, Porter S, Mehic J, Ganz PR, Sardana R, Altosaar I, Dudani A (2003) Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated underground. Genome 46:521–526

    Article  CAS  PubMed  Google Scholar 

  • Tackaberry ES, Prior FA, Rowlandson K, Tocchi M, Mehic J, Porter S, Walsh M, Schleiss MR, Ganz PR, Sardana RK, Altosaar I, Dudani AK (2008) Sustained expression of human cytomegalovirus glycoprotein B (UL55) in the seeds of homozygous rice plants. Mol Biotechnol 40:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ (1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in transgenic potato. Nat Med 4:607–609

    Article  CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    Article  CAS  PubMed  Google Scholar 

  • Tacket CO, Pasetti MF, Edelman R, Howard JA, Streatfield S (2004) Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn. Vaccine 22:4385–4389

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Saito S, Yang L, Nagasaka S, Nishizawa N, Takaiwa F (2005) Oral immunotherapy against a pollen allergy using a seed-based peptide vaccine. Plant Biotechnol J 3:521–533

    Article  CAS  PubMed  Google Scholar 

  • Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen CJ, Mason HS (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci U S A 102:3378–3382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    Article  CAS  PubMed  Google Scholar 

  • Vimolmangkang V, Gasic K, Soria-Guerra R, Rosales-Mendoza S, Moreno-Fierros L, Korban SS (2012) Expression of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus (PRRSV) in soybean seed yields an immunogenic antigenic protein. Planta 235:3513–522

    Article  Google Scholar 

  • Wang Y, Deng H, Zhang X, Xiao H, Jiang Y, Song Y, Fang L, Xiao S, Zhen Y, Chen H (2009) Generation and immunogenicity of Japanese encephalitis virus envelope protein expressed in transgenic rice. Biochem Biophys Res Commun 380:292–297

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Takahashi H, Kajiura H, Kawakatsu T, Fujiyama K, Takaiwa F (2013) Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen Bet v 1 generate giant protein bodies. Plant Cell Physiol 54:917–933

    Article  CAS  PubMed  Google Scholar 

  • Wright KE, Prior F, Sardana R, Altosaar I, Dudani AK, Ganz PR, Tackaberry ES (2001) Sorting of glycoprotein B from human cytomegalovirus to protein storage vesicles in seeds of transgenic tobacco. Transgenic Res 10:177–181

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5:570–578

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Chen S, Duan G (2011) Transgenic peanut (Arachis hypogaea L.) expressing the urease subunit B gene of Helicobacter pylori. Curr Microbiol 63:387–391

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Hirose S, Suzuki K, Hiroi T, Takaiwa F (2012) Expression of hypoallergenic Der f 2 derivatives with altered intramolecular disulphide bonds induces the formation of novel ER-derived protein bodies in transgenic rice seeds. J Exp Bot 63:2947–2959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuki Y, Mejima M, Kurokawa S, Hiroiwa T, Kong IG, Kuroda M, Takahashi Y, Nochi T, Tokuhara D, Kohda T, Kozaki S, Kiyono H (2012) RNAi suppression of rice endogenous storage proteins enhances the production of rice-based Botulinum neurotoxin type A vaccine. Vaccine 30:4160–4166

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7:313–321

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yuan Z, Guo X, Li J, Li Z, Wang Q (2008) Expression of Chlamydophila psittaci MOMP heat-labile toxin B subunit fusion gene in transgenic rice. Biologicals 36:296–302

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rosales-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orellana-Escobedo, L., Korban, S., Rosales-Mendoza, S. (2014). Seed-Based Expression Strategies. In: Rosales-Mendoza, S. (eds) Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0850-9_5

Download citation

Publish with us

Policies and ethics