Skip to main content

Abstract

Toxoplasmosis is a disease caused by the protozoan parasite Toxoplasma gondii. This parasite is transmitted by ingestion of cysts found in the tissues of infected animals or by ingestion of food or water contaminated with oocysts released in the feces of infected cats. T. gondii is able to infect all warm-blooded animals, including humans. Vaccination against T. gondii is the most efficient and safe method to prevent this infectious disease. Since the portal of entry of T. gondii is the mucosa, an efficient stimulation of the mucosa and an adequate systemic response constitute a priority which could be accomplished by the administration of an oral or nasal vaccine. In this context, plant-based expression systems represent an interesting production platform for oral vaccine development due to their reduced manufacturing costs and high scalability. However, the heterologous expression of parasitic antigens in plants has been poorly explored. Despite the lack of interest aroused by the proteins derived from parasites to be expressed in plants, the results shown in the present chapter are auspicious. The antigens of T. gondii in plants orally administered in low doses and without the use of adjuvants have been shown to be able to induce a protective immune response. In fact, the degree of protection observed is similar to that reported by other authors who assayed these proteins as recombinant proteins or DNA vaccines in combination with adjuvants. Both GRA4 and SAG1 expressed in plants are good candidates for the development of a multi-antigenic vaccine against Toxoplasma. In summary, the expression of T. gondii antigens in plants is a realistic strategy to develop an anti-T. gondii vaccine. The joint expression of SAG1 and GRA4 in plants may provide an excellent opportunity to explore the application of an oral vaccine against toxoplasmosis based on edible plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angus CW, Klivington-Evans D, Dubey JP, Kovacs JA (2000) Immunization with a DNA plasmid encoding the SAG1 (P30) protein of Toxoplasma gondii is immunogenic and protective in rodents. J Infect Dis 181(1):317–324

    CAS  PubMed  Google Scholar 

  • Bonenfant C, Dimier-Poisson I, Velge-Roussel F, Buzoni-Gatel D, Del Giudice G, Rappuoli R et al (2001) Intranasal immunization with SAG1 and nontoxic mutant heat-labile enterotoxins protects mice against Toxoplasma gondii. Infect Immun 69(3):1605–1612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourguin I, ChardĂšs T, Bout D (1993) Oral immunization with Toxoplasma gondii antigens in association with cholera toxin induces enhanced protective and cell-mediated immunity in C57BL/6 mice. Infect Immun 61(5):2082–2088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bout DT, Mevelec MN, Velge-Roussel F, Dimier-Poisson I, Lebrun M (2002) Prospects for a human Toxoplasma vaccine. Curr Drug Targets Immune Endocr Metabol Disord 2(3):227–234

    CAS  PubMed  Google Scholar 

  • Brynska A, Tomaszewicz-Libudzic E, Wolanczyk T (2001) Obsessive-compulsive disorder and acquired toxoplasmosis in two children. Eur Child Adolesc Psychiatry 10(3):200–204

    CAS  PubMed  Google Scholar 

  • Burg JL, Perelman D, Kasper LH, Ware PL, Boothroyd JC (1988) Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J Immunol 141(10):3584–3591

    CAS  PubMed  Google Scholar 

  • Buxton D, Innes EA (1995) A commercial vaccine for ovine toxoplasmosis. Parasitology 110(Suppl):S11–16

    Google Scholar 

  • Buxton D, Thomson K, Maley S, Wright S, Bos HJ (1991) Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant. Vet Rec 129(5):89–93

    CAS  PubMed  Google Scholar 

  • Caetano BC, Bruña-Romero O, Fux B, Mendes EA, Penido ML, Gazzinelli RT (2006) Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of Toxoplasma gondii induces immune response and protection against infection in mice. Hum Gene Ther 17(4):415–426

    CAS  PubMed  Google Scholar 

  • Carruthers VB, Giddings OK, Sibley LD (1999) Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cell Microbiol 1(3):225–35

    CAS  PubMed  Google Scholar 

  • Capron A, Dessaint JP (1988) Vaccination against parasitic diseases: some alternative concepts for the definition of protective antigens. Ann Inst Pasteur Immunol 139(1):109–117

    CAS  PubMed  Google Scholar 

  • Cesbron-Delauw MF (1994) Dense-granule organelles of Toxoplasma gondii: their role in the host-parasite relationship. Parasitol Today 10(8):293–296

    CAS  PubMed  Google Scholar 

  • Cesbron-Delauw MF, Capron A (1993) Excreted/secreted antigens of Toxoplasma gondii-their origin and role in the host-parasite interaction. Res Immunol 144(1):41–44

    CAS  PubMed  Google Scholar 

  • Cenci-Goga BT, Rossitto PV, Sechi P, McCrindle CM, Cullor JS (2011) Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathog Dis 8(7):751–762

    PubMed  Google Scholar 

  • Chen XG, Gong Y, Hua-Li, Lun ZR, Fung MC (2001) High-level expression and purification of immunogenic recombinant SAG1 (P30) of Toxoplasma gondii in Escherichia coli. Protein Expr Purif 23(1):33–37

    Google Scholar 

  • Chen G, Chen H, Guo H, Zheng H (2002) Protective effect of DNA-mediated immunization with a combination of SAG1 and IL-2 gene adjuvant against infection of Toxoplasma gondii in mice. Chin Med J (Engl) 115(10):1448–1452

    CAS  Google Scholar 

  • Chen R, Lu SH, Tong QB, Lou D, Shi DY, Jia BB et al (2009) Protective effect of DNA-mediated immunization with liposome-encapsulated GRA4 against infection of Toxoplasma gondii. J Zhejiang Univ Sci B 10(7):512–521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clemente M, Corigliano MG (2012) Overview of plant-made vaccine antigens against malaria. J Biomed Biotechnol 2012:206918

    PubMed Central  PubMed  Google Scholar 

  • Clemente M, Curilovic R, Sassone A, Zelada A, Angel SO, Mentaberry AN (2005) Production of the main surface antigen of Toxoplasma gondii in tobacco leaves and analysis of its antigenicity and immunogenicity. Mol Biotechnol 30(1):41–50

    CAS  PubMed  Google Scholar 

  • Cong H, Gu QM, Jiang Y, He SY, Zhou HY, Yang TT et al (2005) Oral immunization with a live recombinant attenuated Salmonella typhimurium protects mice against Toxoplasma gondii. Parasite Immunol 27(1–2):29–35

    CAS  PubMed  Google Scholar 

  • Cong H, Zhang M, Xin Q, Wang Z, Li Y, Zhao Q et al (2013) Compound DNA vaccine encoding SAG1/SAG3 with A2/B subunit of cholera toxin as a genetic adjuvant protects BALB/c mice against Toxoplasma gondii. Parasit Vectors 6:63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook AJ, Gilbert RE, Buffolano W, Zufferey J, Petersen E, Jenum PA et al (2000) Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European research network on congenital toxoplasmosis. BMJ 321(7254):142–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Couper KN, Nielsen HV, Petersen E, Roberts F, Roberts CW, Alexander J (2003) DNA vaccination with the immunodominant tachyzoite surface antigen (SAG-1) protects against adult acquired Toxoplasma gondii infection but does not prevent maternofoetal transmission. Vaccine 21(21–22):2813–2820

    CAS  PubMed  Google Scholar 

  • Couvreur G, Sadak A, Fortier B, Dubremetz JF (1988) Surface antigens of Toxoplasma gondii. Parasitology 97(Pt 1):1–10

    PubMed  Google Scholar 

  • Del L YĂĄcono M, Farran I, Becher ML, Sander V, SĂĄnchez VR, MartĂ­n V et al (2012) A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. Plant Biotechnol J 10(9):1136–1144

    PubMed  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28(4):427–435

    CAS  PubMed  Google Scholar 

  • Desolme B, MĂ©vĂ©lec MN, Buzoni-Gatel D, Bout D (2000) Induction of protective immunity against toxoplasmosis in mice by DNA immunization with a plasmid encoding Toxoplasma gondii GRA4 gene. Vaccine 18(23):2512–2521

    CAS  PubMed  Google Scholar 

  • Dubey JP (2000) Sources of Toxoplasma gondii infection in pregnancy. Until rates of congenital toxoplasmosis fall, control measures are essential. BMJ 321(7254):127–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubey JP (2008) The history of Toxoplasma gondii-the first 100 years. J Eukaryot Microbiol 55(6):467–475

    PubMed  Google Scholar 

  • Dziadek B, Gatkowska J, Brzostek A, Dziadek J, Dzitko K, Grzybowski M et al (2011) Evaluation of three recombinant multi-antigenic vaccines composed of surface and secretory antigens of Toxoplasma gondii in murine models of experimental toxoplasmosis. Vaccine 29(4):821–830

    CAS  PubMed  Google Scholar 

  • Dziadek B, Gatkowska J, Grzybowski M, Dziadek J, Dzitko K, Dlugonska H (2012) Toxoplasma gondii: the vaccine potential of three trivalent antigen-cocktails composed of recombinant ROP2, ROP4, GRA4 and SAG1 proteins against chronic toxoplasmosis in BALB/c mice. Exp Parasitol 131(1):133–138

    CAS  PubMed  Google Scholar 

  • Fachado A, RodrĂ­guez A, Angel SO, Pinto DC, Vila I, Acosta A, Amendoeira RR, Lanses-Vieira J (2003) Protective effect of a naked DNA vaccine cocktail against lethal toxoplasmosis in mice. Vaccine 21:1327–1335

    CAS  PubMed  Google Scholar 

  • Fang R, Feng H, Hu M, Khan MK, Wang L, Zhou Y et al (2012) Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Vet Parasitol 187(1–2):140–146

    CAS  PubMed  Google Scholar 

  • Ferguson DJ, Jacobs D, Saman E, Dubremetz JF, Wright SE (1999) In vivo expression and distribution of dense granule protein 7 (GRA7) in the exoenteric (tachyzoite, bradyzoite) and enteric (coccidian) forms of Toxoplasma gondii. Parasitology 119(Pt 3):259–265

    CAS  PubMed  Google Scholar 

  • Ferraro G, Becher ML, Angel SO, Zelada A, Mentaberry AN, Clemente M (2008) Efficient expression of a Toxoplasma gondii dense granule Gra4 antigen in tobacco leaves. Exp Parasitol 120(1):118–122

    CAS  PubMed  Google Scholar 

  • Fischer HG, Stachelhaus S, Sahm M, Meyer HE, Reichmann G (1998) GRA7, an excretory 29 kDa Toxoplasma gondii dense granule antigen released by infected host cells. Mol Biochem Parasitol 91(2):251–262

    CAS  PubMed  Google Scholar 

  • Garcia JL, Navarro IT, Biazzono L, Freire RL, da Silva GuimarĂŁes Junior J, Cryssafidis AL et al (2007) Protective activity against oocyst shedding in cats vaccinated with crude rhoptry proteins of the Toxoplasma gondii by the intranasal route. Vet Parasitol 145(3–4):197–206

    CAS  PubMed  Google Scholar 

  • Guerina NG, Hsu HW, Meissner HC, Maguire JH, Lynfield R, Stechenberg B et al (1994) Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The new england regional Toxoplasma working group. N Engl J Med 330(26):1858–1863

    CAS  PubMed  Google Scholar 

  • Haumont M, Delhaye L, Garcia L, Jurado M, Mazzu P, Daminet V et al (2000) Protective immunity against congenital toxoplasmosis with recombinant SAG1 protein in a guinea pig model. Infect Immun 68(9):4948–4953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hefferon KL (2010) The mucosal immune response to plant-derived vaccines. Pharm Res 27(10):2040–2042

    CAS  PubMed  Google Scholar 

  • Hefferon KL (2012) Recent patents in plant biotechnology: impact on global health. Recent Pat Biotechnol 6(2):97–105

    CAS  PubMed  Google Scholar 

  • Henriquez FL, Woods S, Cong H, McLeod R, Roberts CW (2010) Immunogenetics of Toxoplasma gondii informs vaccine design. Trends Parasitol 26(11):550–555

    CAS  PubMed  Google Scholar 

  • Hill D, Dubey JP (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 8(10):634–640

    CAS  PubMed  Google Scholar 

  • HiszczyƄska-Sawicka E, Li H, Xu JB, Oledzka G, Kur J, Bickerstaffe R, Stankiewicz M (2010) Comparison of immune response in sheep immunized with DNA vaccine encoding Toxoplasma gondii GRA7 antigen in different adjuvant formulations. Exp Parasitol 124(4):365–372

    CAS  PubMed  Google Scholar 

  • HiszczyƄska-Sawicka E, Olędzka G, Holec-Gąsior L, Li H, Xu JB, Sedcole R et al (2011) Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet Parasitol 177(3–4):281–289

    PubMed  Google Scholar 

  • Holland GN (2003) Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 136(6):973–988

    PubMed  Google Scholar 

  • Hoseinian Khosroshahi K, Ghaffarifar F, D’Souza S, Sharifi Z, Dalimi A (2011) Evaluation of the immune response induced by DNA vaccine cocktail expressing complete SAG1 and ROP2 genes against toxoplasmosis. Vaccine 29(4):778–783

    CAS  PubMed  Google Scholar 

  • Huynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, Carruthers VB (2003) Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2-M2AP adhesive protein complex. EMBO J 22(9):2082–2090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Igarashi M, Kano F, Tamekuni K, Kawasaki PM, Navarro IT, Vidotto O, Vidotto MC, Machado RZ, Garcia JL (2008) Toxoplasma gondii: cloning, sequencing, expression, and antigenic characterization of ROP2, GRA5 and GRA7. Genet Mol Res 7(2):305–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Innes EA, Vermeulen AN (2006) Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora. Parasitology 133(Suppl):S145–168

    Google Scholar 

  • Innes EA, Bartley PM, Maley S, Katzer F, Buxton D (2009) Veterinary vaccines against Toxoplasma gondii. Mem Inst Oswaldo Cruz 104(2):246–251

    CAS  PubMed  Google Scholar 

  • Innes EA (2010) A brief history and overview of Toxoplasma gondii. Zoonoses Public Health 57(1):1–7

    CAS  PubMed  Google Scholar 

  • Jacob SS, Cherian S, Sumithra TG, Raina OK, Sankar M (2013) Edible vaccines against veterinary parasitic diseases-current status and future prospects. Vaccine 31(15):1879–1885

    CAS  PubMed  Google Scholar 

  • Jacobs D, Dubremetz JF, Loyens A, Bosman F, Saman E (1998) Identification and heterologous expression of a new dense granule protein (GRA7) from Toxoplasma gondii. Mol Biochem Parasitol 91(2):237–249

    CAS  PubMed  Google Scholar 

  • Jacobs D, Vercammen M, Saman E (1999) Evaluation of recombinant dense granule antigen 7 (GRA7) of Toxoplasma gondii for detection of immunoglobulin G antibodies and analysis of a major antigenic domain. Clin Diagn Lab Immunol 6(1):24–9

    CAS  PubMed  Google Scholar 

  • Jones JL, Dubey JP (2012) Foodborne toxoplasmosis. Clin Infect Dis 55(6):845–851

    PubMed  Google Scholar 

  • Jongert E, de Craeye S, Dewit J, Huygen K (2007) GRA7 provides protective immunity in cocktail DNA vaccines against Toxoplasma gondii. Parasite Immunol 29(9):445–453

    CAS  PubMed  Google Scholar 

  • Jongert E, Melkebeek V, De Craeye S, Dewit J, Verhelst D, Cox E (2008) An enhanced GRA1-GRA7 cocktail DNA vaccine primes anti-toxoplasma immune responses in pigs. Vaccine 26(8):1025–1031

    CAS  PubMed  Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27(6):879–894

    CAS  PubMed  Google Scholar 

  • Kasper LH, Crabb JH, Pfefferkorn ER (1983) Purification of a major membrane protein of Toxoplasma gondii by immunoabsorption with a monoclonal antibody. J Immunol 130(5):2407–2412

    CAS  PubMed  Google Scholar 

  • Kasper LH, Bradley MS, Pfefferkorn ER (1984) Identification of stage-specific sporozoite antigens of Toxoplasma gondii by monoclonal antibodies. J Immunol 132(1):443–449

    CAS  PubMed  Google Scholar 

  • Khan IA, Eckel ME, Pfefferkorn ER, Kasper LH (1988) Production of gamma interferon by cultured human lymphocytes stimulated with a purified membrane protein (P30) from Toxoplasma gondii. J Infect Dis 157(5):979–984

    CAS  PubMed  Google Scholar 

  • Kijlstra A, Jongert E (2008) Control of the risk of human toxoplasmosis transmitted by meat. Int J Parasitol 38(12):1359–1370

    CAS  PubMed  Google Scholar 

  • Kortbeek LM, Hofhuis A, Nijhuis CD, Havelaar AH (2009) Congenital toxoplasmosis and DALYsin the Netherlands. Mem Inst Oswaldo Cruz 104(2):370–373

    PubMed  Google Scholar 

  • Kur J, Holec-Gasior L, HiszczyƄska-Sawicka E (2009) Current status of toxoplasmosis vaccinedevelopment. Expert Rev Vaccines 8(6):791–808

    CAS  PubMed  Google Scholar 

  • Labruyere E, Lingnau M, Mercier C, Sibley LD (1999) Differential membrane targeting of the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma gondii. Mol Biochem Parasitol 102(2):311–324

    CAS  PubMed  Google Scholar 

  • LaguĂ­a-Becher M, MartĂ­n V, Kraemer M, Corigliano M, Yacono ML, Goldman A et al (2010) Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol 10:52

    PubMed Central  PubMed  Google Scholar 

  • Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 8(1):e54708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H et al (2005) The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 7(12):1823–1833

    CAS  PubMed  Google Scholar 

  • Lekutis C, Ferguson DJ, Grigg ME, Camps M, Boothroyd JC (2001) Surface antigens of Toxoplasma gondii: variations on a theme. Int J Parasitol 31(12):1285–1292

    CAS  PubMed  Google Scholar 

  • Levine ND (1977) Tazonomy of Toxoplasma. J Protozool 24(1):36–41

    CAS  PubMed  Google Scholar 

  • Li WS, Chen QX, Ye JX, Xie ZX, Chen J, Zhang LF (2011) Comparative evaluation of immunization with recombinant protein and plasmid DNA vaccines of fusion antigen ROP2 and SAG1 from Toxoplasma gondii in mice: cellular and humoral immune responses. Parasitol Res 109(3):637–644

    PubMed  Google Scholar 

  • Liljeqvist S, StĂ„hl S (1999) Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 73(1):1–33

    CAS  PubMed  Google Scholar 

  • Liu KY, Zhang DB, Wei QK, Li J, Li GP, Yu JZ (2006) Biological role of surface Toxoplasma gondii antigen in development of vaccine. World J Gastroenterol 12(15):2363–2368

    CAS  PubMed  Google Scholar 

  • Liu Q, Gao S, Jiang L, Shang L, Men J, Wang Z et al (2008) A recombinant pseudorabies virus expressing TgSAG1 protects against challenge with the virulent Toxoplasma gondii RH strain and pseudorabies in BALB/c mice. Microbes Infect 10(12–13):1355–1362

    CAS  PubMed  Google Scholar 

  • Liu Q, Shang L, Jin H, Wei F, Zhu XQ, Gao H (2010) The protective effect of a Toxoplasma gondii SAG1 plasmid DNA vaccine in mice is enhanced with IL-18. Res Vet Sci 89(1):93–97

    CAS  PubMed  Google Scholar 

  • Lössl AG, Waheed MT (2011) Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J 9(5):527–539

    CAS  PubMed  Google Scholar 

  • Luft BJ, Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis 15(2):211–222

    CAS  PubMed  Google Scholar 

  • Martin V, Supanitsky A, Echeverria PC, Litwin S, Tanos T, De Roodt AR et al (2004) Recombinant GRA4 or ROP2 protein combined with alum or the gra4 gene provides partial protection in chronic murine models of toxoplasmosis. Clin Diagn Lab Immunol 11(4):704–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes ÉA, Fonseca FG, CasĂ©rio BM, Colina JP, Gazzinelli RT, Caetano BC (2013) Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.PLoS One 8(5):e63201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng M, He S, Zhao G, Bai Y, Zhou H, Cong H, Lu G, Zhao Q, Zhu XQ. (2012) Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii: surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice. Parasit Vectors 5:273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menzies FM, Henriquez FL, Roberts CW (2008) Immunological control of congenital toxoplasmosis in the murine model. Immunol Lett 15(2):83–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mevelec MN, ChardĂšs T, Mercereau-Puijalon O, Bourguin I, Achbarou A, Dubremetz JF et al (1992) Molecular cloning of GRA4, a Toxoplasma gondii dense granule protein, recognized by mucosal IgA antibodies. Mol Biochem Parasitol 56(2):227–238

    CAS  PubMed  Google Scholar 

  • MĂ©vĂ©lec MN, Mercereau-Puijalon O, Buzoni-Gatel D, Bourguin I, ChardĂšs T, Dubremetz JF et al (1998) Mapping of B epitopes in GRA4, a dense granule antigen of Toxoplasma gondii and protection studies using recombinant proteins administered by the oral route. Parasite Immunol 20(4):183–195

    PubMed  Google Scholar 

  • MĂ©vĂ©lec MN, Bout D, Desolme B, Marchand H, MagnĂ© R, Bruneel O et al (2005) Evaluation of protective effect of DNA vaccination with genes encoding antigens GRA4 and SAG1 associated with GM-CSF plasmid, against acute, chronical and congenital toxoplasmosis in mice. Vaccine 23(36):4489–4499

    PubMed  Google Scholar 

  • Mercier C, Dubremetz JF, Rauscher B, Lecordier L, Sibley LD, Cesbron-Delauw MF (2002) Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins. Mol Biol Cell 13(7):2397–2409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miman O, Kusbeci OY, Aktepe OC, Cetinkaya Z (2010) The probable relation between Toxoplasma gondii and Parkinson’s disease. Neurosci Lett 475(3):129–131

    CAS  PubMed  Google Scholar 

  • Min J, Qu D, Li C, Song X, Zhao Q, Li XA et al (2012) Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy. Vaccine 30(38):5631–5636

    CAS  PubMed  Google Scholar 

  • Minkoff H, Remington JS, Holman S, Ramirez R, Goodwin S, Landesman S (1997) Vertical transmission of toxoplasma by human immunodeficiency virus-infected women. Am J Obstet Gynecol 176(3):555–559

    CAS  PubMed  Google Scholar 

  • Mitchell CD, Erlich SS, Mastrucci MT, Hutto SC, Parks WP, Scott GB (1990) Congenital toxoplasmosis occurring in infants perinatally infected with human immunodeficiency virus 1. Pediatr Infect Dis J 9(7):512–518

    CAS  PubMed  Google Scholar 

  • Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976

    CAS  PubMed  Google Scholar 

  • Montoya JG, Lowe KE, Clayberger C, Moody D, Do D, Remington JS et al (1996) Human CD4+ and CD8+ T lymphocytes are both cytotoxic to Toxoplasma gondii-infected cells. Infect Immun 64(1):176–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mui EJ, Schiehser GA, Milhous WK, Hsu H, Roberts CW, Kirisits M et al (2008) Novel triazine JPC-2067-B inhibits Toxoplasma gondii in vitro and in vivo. PLoS Negl Trop Dis 2(3):e190

    PubMed Central  PubMed  Google Scholar 

  • Neudeck A, Stachelhaus S, Nischik N, Striepen B, Reichmann G, Fischer HG (2002) Expression variance, biochemical and immunological properties of Toxoplasma gondii dense granule protein GRA7. Microbes Infect 4(6):581–590

    CAS  PubMed  Google Scholar 

  • Nielsen HV, LauemĂžller SL, Christiansen L, Buus S, Fomsgaard A, Petersen E (1999) Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG1 gene. Infect Immun 67(12):6358–6363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen TD, Bigaignon G, Markine-Goriaynoff D, Heremans H, Nguyen TN, Warnier G et al (2003) Virulent Toxoplasma gondii strain RH promotes T-cell-independent overproduction of proinflammatory cytokines IL12 and gamma-interferon. J Med Microbiol 52(Pt 10):869–876

    CAS  PubMed  Google Scholar 

  • Pappas G, Roussos N, Falagas ME (2009) Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 39(12):1385–1394

    PubMed  Google Scholar 

  • Paul M, Ma JK (2010) Plant-made immunogens and effective delivery strategies. Expert Rev Vaccines 9(8):821–833

    CAS  PubMed  Google Scholar 

  • Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58(1):58–67

    CAS  PubMed  Google Scholar 

  • Pedersen MG, Stevens H, Pedersen CB, NĂžrgaard-Pedersen B, Mortensen PB (2011) Toxoplasma infection and later development of schizophrenia in mothers. Am J Psychiatry 168(8):814–821

    PubMed  Google Scholar 

  • Pelosi A, Shepherd R, Walmsley AM (2012) Delivery of plant-made vaccines and therapeutics. Biotechnol Adv 30(2):440–448

    CAS  PubMed  Google Scholar 

  • Petersen E, Nielsen HV, Christiansen L, Spenter J (1998) Immunization with E. coli produced recombinant T. gondii SAG1 with alum as adjuvant protect mice against lethal infection with Toxoplasma gondii. Vaccine 16(13):1283–1289

    CAS  PubMed  Google Scholar 

  • Petersen E, Vesco G, Villari S, Buffolano W (2010) What do we know about risk factors for infection in humans with Toxoplasma gondii and how can we prevent infections? Zoonoses Public Health 57(1):8–17

    CAS  PubMed  Google Scholar 

  • Pfrepper KI, Enders G, Gohl M, Krczal D, Hlobil H, Wassenberg D et al (2005) Seroreactivity to and avidity for recombinant antigens in toxoplasmosis. Clin Diagn Lab Immunol 12(8):977–982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qu D, Wang S, Cai W, Du A (2008) Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 26(35):4541–4548

    CAS  PubMed  Google Scholar 

  • Quan JH, Chu JQ, Ismail HA, Zhou W, Jo EK, Cha GH, Lee YH (2012)Induction of protective immune responses by a multiantigenic DNA vaccine encoding GRA7 and ROP1 of Toxoplasma gondii. Clin Vaccine Immunol 19(5):666–674

    Google Scholar 

  • Robert-Gangneux F, DardĂ© ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saavedra R, Becerril MA, Dubeaux C, Lippens R, De Vos MJ, HĂ©rion P et al (1996) Epitopes recognized by human T lymphocytes in the ROP2 protein antigen of Toxoplasma gondii. Infect Immun 64(9):3858–3862

    CAS  PubMed Central  PubMed  Google Scholar 

  • SĂĄnchez VR, Pitkowski MN, FernĂĄndez Cuppari AV, RodrĂ­guez FM, Fenoy IM, Frank FM et al (2011) Combination of CpG-oligodeoxynucleotides with recombinant ROP2 or GRA4 proteins induces protective immunity against Toxoplasma gondii infection. Exp Parasitol 128(4):448–453

    PubMed  Google Scholar 

  • Shang L, Liu Q, Liu W, Men J, Gao S, Jiang L et al (2009) Protection in mice immunized with a heterologous prime-boost regime using DNA and recombinant pseudorabies expressing TgSAG1 against Toxoplasma gondii challenge. Vaccine 27(21):2741–2745

    CAS  PubMed  Google Scholar 

  • Stanford MR, Tan HK, Gilbert RE (2006) Toxoplasmic retinochoroiditis presenting in childhood: clinical findings in a UK survey. Br J Ophthalmol 90(12):1464–1467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5(1):2–15

    CAS  PubMed  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33(5–6):479–493

    CAS  PubMed  Google Scholar 

  • Subauste CS, Koniaris AH, Remington JS (1991) Murine CD8+ cytotoxic T lymphocytes lyse Toxoplasma gondii-infected cells. J Immunol 147(11):3955–3959

    CAS  PubMed  Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30(12–13):1217–1258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas F, Lafferty KD, Brodeur J, Elguero E, Gauthier-Clerc M, MissĂ© D (2012) Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common. Biol Lett 8(1):101–103

    PubMed Central  PubMed  Google Scholar 

  • Velge-Roussel F, ChardĂšs T, MĂ©vĂ©lec P, Brillard M, Hoebeke J, Bout D (1994) Epitopic analysis of the Toxoplasma gondii major surface antigen SAG1. Mol Biochem Parasitol 66(1):31–38

    CAS  PubMed  Google Scholar 

  • Velge-Roussel F, Marcelo P, Lepage AC, Buzoni-Gatel D, Bout DT (2000) Intranasal immunization with Toxoplasma gondii SAG1 induces protective cells into both NALT and GALT compartments. Infect Immun 68(2):969–972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vercammen M, Scorza T, Huygen K, De Braekeleer J, Diet R, Jacobs D et al (2000) DNA vaccination with genes encoding Toxoplasma gondii antigens RA1, GRA7, and ROP2 induces partially protective immunity against lethal challenge in mice. Infect Immun 68(1):38–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villena I, Ancelle T, Delmas C, Garcia P, Brezin AP, Thulliez P et al (2010) Congenital toxoplasmosis in France in 2007: first results from a national surveillance system. Euro Surveill 15(25)

    Google Scholar 

  • Vittecoq M, Elguero E, Lafferty KD, Roche B, Brodeur J, Gauthier-Clerc M Thomas F et al (2012) Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France. Infect Genet Evol 12(2):496–498

    PubMed  Google Scholar 

  • Wang H, He S, Yao Y, Cong H, Zhao H, Li T, Zhu XQ (2009) Toxoplasma gondii: protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice. Exp Parasitol 122(3):226–232

    Google Scholar 

  • Weiss LM, Kim K (2000) The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci 5:D391–405

    Google Scholar 

  • Yolken RH, Dickerson FB, Fuller Torrey E (2009) Toxoplasma and schizophrenia. Parasite Immunol 31(11):706–715

    CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7(3):313–321

    CAS  PubMed  Google Scholar 

  • Zhang G, Huong VT, Battur B, Zhou J, Zhang H, Liao M, Kawase O, Lee EG, Dautu G, Igarashi M, Nishikawa Y, Xuan X (2007) A heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, induced protective immunity against Toxoplasma gondii infection in mice. Parasitology 134(Pt 10):1339–1346

    Google Scholar 

  • Zhou H, Gu Q, Zhao Q, Zhang J, Cong H, Li Y et al (2007) Toxoplasma gondii: expression and characterization of a recombinant protein containing SAG1 and GRA2 in Pichia pastoris. Parasitol Res 100(4):829–835

    PubMed  Google Scholar 

  • Zucca M, Savoia D (2011) Current developments in the therapy of protozoan infections. Open Med Chem J 5:4–10

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Clemente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clemente, M. (2014). Plant-Based Vaccines Against Toxoplasmosis. In: Rosales-Mendoza, S. (eds) Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0850-9_11

Download citation

Publish with us

Policies and ethics