Skip to main content

Food Allergy and Gastrointestinal Tract

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

How harmless food protein becomes recognized by the mucosal immune system as an allergen remains an open question. The pathophysiology of food allergy is characterized by a skewed Th2 response to specific food proteins. More data are needed to explain how regulatory mechanisms of the mucosal immune system fail and result in allergic sensitization to dietary antigens. Gut homeostasis and immunity is a complex interplay of innate and adaptive immune responses. The mucosal immune system is the largest reservoir of immune cells in the body and has an extremely difficult task in distinguishing harmless from harmful antigens, former making majority of signals that mucosal immune system encounters. Normal response of the mucosal immune system to a dietary antigen is an oral tolerance, being in a state of anergy, or a regulated suppression of its immune response.

Mesenteric lymph nodes (MLNs) are essential for the induction of oral tolerance, which depends on Foxp3 + T regulatory (Treg) cells. Migration of Foxp3 + Treg cells from the MLNs to the lamina propria occurs via gut-homing signals. CD103 + dendritic cells in MLNs drive the differentiation of regulatory T cells in the presence of TGF-β and retinoic acid. Major conduits of antigens to intestinal CD103 + dendritic cells are Goblet cells. Intestinal antigen presenting cells occur in variety of subtypes and may have distinctive functions in mucosal immunity and regulating gut homeostasis. Signals coming from the diet and microbiome can modulate these interactions and influence mucosal immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ag:

Antigen

AhR:

Aryl hydrocarbon receptor

APC:

Antigen-presenting cell

CCD:

Cross-reactive carbohydrate determinants

CCR:

CC-chemokine receptor

CXCR:

CXC-chemokine receptor

CT:

Cholera toxin

DBPCFC:

Double-blind, placebo controlled, oral food challenge

DC:

Dendritic cell

EAST:

Enzyme-allergosorbent test

ELISA:

Enzyme-linked immunosorbent assay

Foxp3:

Forkhead box protein 3

FAO:

The Food and Agriculture Organization

GALT:

Gut-associated lymphoid tissue

GIT:

Gastrointestinal tract

HDM:

House dust mite

IFN-γ:

Interferon gamma

IgE:

Immunoglobulin E

IEL:

Intraepithelial lymphocyte

IPEX:

Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome

iTregs:

Induced regulatory T cells

JAK:

Janus kinase

LAP:

Latency-associated peptide

LPDC:

CD103(+) dendritic cell of the lamina propria

LTP:

Lipid transfer proteins

M cells:

Microfold cells

MHC:

Major histocompatibility complex

MLN:

Mesenteric lymph node

nTreg:

Natural regulatory T cell

OAS:

Oral allergy syndrome

OFC:

Oral food challenge

OVA:

Ovalbumin;

PAF:

Platelet activation factor

PBMC:

Peripheral blood mononuclear cell

PDL1:

Programmed cell death ligand 1

PP:

Peyer’s patch

RAST:

radio-allergosorbent test

SPT:

Skin prick test

SRS-A:

Slow reacting substance of anaphylaxis

STAT:

Signal transducer and activator of transcription

TCR:

T cell receptor

TGF-β:

Transforming growth factor beta

Th:

T helper lymphocyte

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor

Treg:

T regulatory lymphocyte

TSLP:

Thymic stromal lymphopoietin

WHO:

World Health Organization

References

  1. Eigenmann PA, Beyer K, Wesley Burks A, Lack G, Liacouras CA, Hourihane JO, Sampson HA, Sodergren E: New visions for food allergy: an iPAC summary and future trends. Pediatr Allergy Immunol 2008, 19 Suppl 19:26–39.

    Google Scholar 

  2. Lemke PJaT, S.L.: Allergic reactions and food intolerances. In “Nutritional Toxicology,” ed FN Kotsonis, M Mackey, and J Hjelle, Raven Press, NY 1994: pp. 117–137.

    Google Scholar 

  3. Kumar S, Verma AK, Das M, Dwivedi PD: Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol 2012, 13(4):432–439.

    Article  CAS  Google Scholar 

  4. Broide DH: Molecular and cellular mechanisms of allergic disease. J Allergy Clin Immunol 2001, 108(2 Suppl):S65–71.

    Article  Google Scholar 

  5. Gilfillan AM, Rivera J: The tyrosine kinase network regulating mast cell activation. Immunol Rev 2009, 228(1):149–169.

    Article  CAS  Google Scholar 

  6. Hart PH: Regulation of the inflammatory response in asthma by mast cell products. Immunol Cell Biol 2001, 79(2):149–153.

    Article  CAS  Google Scholar 

  7. Fukuoka Y, Xia HZ, Sanchez-Munoz LB, Dellinger AL, Escribano L, Schwartz LB: Generation of anaphylatoxins by human beta-tryptase from C3, C4, and C5. J Immunol 2008, 180(9):6307–6316.

    Article  CAS  Google Scholar 

  8. Mills EN, Mackie AR, Burney P, Beyer K, Frewer L, Madsen C, Botjes E, Crevel RW, van Ree R: The prevalence, cost and basis of food allergy across Europe. Allergy 2007, 62(7):717–722.

    Article  CAS  Google Scholar 

  9. Gupta RS, Kim JS, Barnathan JA, Amsden LB, Tummala LS, Holl JL: Food allergy knowledge, attitudes and beliefs: focus groups of parents, physicians and the general public. BMC Pediatrics 2008, 8:36.

    Google Scholar 

  10. Sampson HA: Update on food allergy. J Allergy Clin Immunol 2004, 113(5):805–819; quiz 820.

    Article  CAS  Google Scholar 

  11. Sicherer SH, Sampson HA: Food allergy. J Allergy Clin Immunol 2010, 125(2 Suppl 2):S116–125.

    Article  Google Scholar 

  12. Sampson HA: Anaphylaxis and emergency treatment. Pediatrics 2003, 111(6 Pt 3):1601–1608.

    Google Scholar 

  13. Story RE: Manifestations of food allergy in infants and children. Pediatric Annals 2008, 37(8):530–535.

    Google Scholar 

  14. Hofmann A, Burks AW: Pollen food syndrome: update on the allergens. Curr Allergy Asthma Rep 2008, 8(5):413–417.

    Article  Google Scholar 

  15. Egger M, Mutschlechner S, Wopfner N, Gadermaier G, Briza P, Ferreira F: Pollen-food syndromes associated with weed pollinosis: an update from the molecular point of view. Allergy 2006, 61(4):461–476.

    Article  CAS  Google Scholar 

  16. Sicherer SH: Food allergy. Lancet 2002, 360(9334):701–710.

    Article  Google Scholar 

  17. Byrne AM, Malka-Rais J, Burks AW, Fleischer DM: How do we know when peanut and tree nut allergy have resolved, and how do we keep it resolved? Clin Exp Allergy 2010, 40(9):1303–1311.

    Article  CAS  Google Scholar 

  18. Niggemann B, Beyer K: Pitfalls in double-blind, placebo-controlled oral food challenges. Allergy 2007, 62(7):729–732.

    Article  CAS  Google Scholar 

  19. Bindslev-Jensen C, Ballmer-Weber BK, Bengtsson U, Blanco C, Ebner C, Hourihane J, Knulst AC, Moneret-Vautrin DA, Nekam K, Niggemann B et al: Standardization of food challenges in patients with immediate reactions to foods-position paper from the European Academy of Allergology and Clinical Immunology. Allergy 2004, 59(7):690–697.

    Article  CAS  Google Scholar 

  20. Burks AW: Peanut allergy. Lancet 2008, 371(9623):1538–1546.

    Article  CAS  Google Scholar 

  21. Stanic-Vucinic D, Stojadinovic M, Atanaskovic-Markovic M, Ognjenovic J, Gronlund H, van Hage M, Lantto R, Sancho AI, Velickovic TC: Structural changes and allergenic properties of beta-lactoglobulin upon exposure to high-intensity ultrasound. Mol Nutr Food Res 2012, 56(12):1894–1905.

    Article  CAS  Google Scholar 

  22. Wood RA: The natural history of food allergy. Pediatrics 2003, 111(6 Pt 3):1631–1637.

    Google Scholar 

  23. Nowak-Wegrzyn A, Bloom KA, Sicherer SH, Shreffler WG, Noone S, Wanich N, Sampson HA: Tolerance to extensively heated milk in children with cow s milk allergy. J Allergy Clin Immunol 2008, 122(2):342–347, 347 e341–342.

    Article  Google Scholar 

  24. Kim JS: Food allergy: diagnosis, treatment, prognosis, and prevention. Pediatr Ann 2008, 37(8):546–551.

    Google Scholar 

  25. Thygarajan A, Burks AW: American Academy of Pediatrics recommendations on the effects of early nutritional interventions on the development of atopic disease. Curr Opin Pediatr 2008, 20(6):698–702.

    Article  Google Scholar 

  26. Erickson RH, Kim YS: Digestion and absorption of dietary protein. Annu Rev Med 1990, 41:133–139.

    Google Scholar 

  27. Roth-Walter F, Berin MC, Arnaboldi P, Escalante CR, Dahan S, Rauch J, Jensen-Jarolim E, Mayer L: Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer s patches. Allergy 2008, 63(7):882–890.

    Article  CAS  Google Scholar 

  28. Perrier C, Corthesy B: Gut permeability and food allergies. Clin Exp Allergy 2011, 41(1):20–28.

    Article  CAS  Google Scholar 

  29. Sicherer SH, Burks AW, Sampson HA: Clinical features of acute allergic reactions to peanut and tree nuts in children. Pediatrics 1998, 102(1):e6.

    Article  CAS  Google Scholar 

  30. Lack G, Fox D, Northstone K, Golding J: Factors associated with the development of peanut allergy in childhood. N Engl J Med 2003, 348(11):977–985.

    Article  Google Scholar 

  31. Kamemura N, Tada H, Shimojo N, Morita Y, Kohno Y, Ichioka T, Suzuki K, Kubota K, Hiyoshi M, Kido H: Intrauterine sensitization of allergen-specific IgE analyzed by a highly sensitive new allergen microarray. J Allergy Clin Immunol 2012, 130(1):113–121 e112.

    Google Scholar 

  32. Astwood JD, Leach JN, Fuchs RL: Stability of food allergens to digestion in vitro. Nat Biotechnol 1996, 14(10):1269–1273.

    Article  CAS  Google Scholar 

  33. Bannon GA: What makes a food protein an allergen? Curr Allergy Asthma Rep 2004, 4(1):43–46.

    Article  Google Scholar 

  34. Vieths S, Scheurer S, Ballmer-Weber B: Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci 2002, 964:47–68.

    Article  CAS  Google Scholar 

  35. Sancho AI, Wangorsch A, Jensen BM, Watson A, Alexeev Y, Johnson PE, Mackie AR, Neubauer A, Reese G, Ballmer-Weber B et al: Responsiveness of the major birch allergen Bet v 1 scaffold to the gastric environment: impact on structure and allergenic activity. Mol Nutr Food Res 2011, 55(11):1690–1699.

    Article  CAS  Google Scholar 

  36. Burastero SE: Pollen-cross allergenicity mediated by panallergens: a clue to the patho-genesis of multiple sensitizations. Inflamm Allergy Drug Targets 2006, 5(4):203–209.

    Article  CAS  Google Scholar 

  37. Chardin H, Senechal H, Wal JM, Desvaux FX, Godfrin D, Peltre G: Characterization of peptidic and carbohydrate cross-reactive determinants in pollen polysensitization. Clin Exp Allergy 2008, 38(4):680–685.

    Article  CAS  Google Scholar 

  38. Foetisch K, Westphal S, Lauer I, Retzek M, Altmann F, Kolarich D, Scheurer S, Vieths S: Biological activity of IgE specific for cross-reactive carbohydrate determinants. J Allergy Clin Immunol 2003, 111(4):889–896.

    Article  CAS  Google Scholar 

  39. Westphal S, Kolarich D, Foetisch K, Lauer I, Altmann F, Conti A, Crespo JF, Rodriguez J, Enrique E, Vieths S et al: Molecular characterization and allergenic activity of Lyc e 2 (beta-fructofuranosidase), a glycosylated allergen of tomato. Eur J Biochem 2003, 270(6):1327–1337.

    Article  CAS  Google Scholar 

  40. Bublin M, Radauer C, Wilson IB, Kraft D, Scheiner O, Breiteneder H, Hoffmann-Sommergruber K: Cross-reactive N-glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. Faseb J 2003, 17(12):1697–1699.

    CAS  Google Scholar 

  41. Bohle B, Zwolfer B, Heratizadeh A, Jahn-Schmid B, Antonia YD, Alter M, Keller W, Zuidmeer L, van Ree R, Werfel T et al: Cooking birch pollen-related food: divergent consequences for IgE- and T cell-mediated reactivity in vitro and in vivo. J Allergy Clin Immunol 2006, 118(1):242–249.

    Article  CAS  Google Scholar 

  42. Vickery BP, Scurlock AM, Jones SM, Burks AW: Mechanisms of immune tolerance relevant to food allergy. J Allergy Clin Immunol 2011, 127(3):576–584; quiz 585–576.

    Article  Google Scholar 

  43. Pabst O, Mowat AM: Oral tolerance to food protein. Mucosal Immunol 2012, 5(3):232–239.

    Article  CAS  Google Scholar 

  44. Gourbeyre P, Denery S, Bodinier M: Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 2011, 89(5):685–695.

    Article  CAS  Google Scholar 

  45. Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D, Madan R, Karp CL, Pulendran B: Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol 2011, 187(2):733–747.

    Article  CAS  Google Scholar 

  46. Weiner HL, da Cunha AP, Quintana F, Wu H: Oral tolerance. Immunol Rev 2011, 241(1):241–259.

    Article  CAS  Google Scholar 

  47. Berin MC, Sampson HA: Mucosal immunology of food allergy. Curr Biol 2013, 23(9):R389–400.

    Article  CAS  Google Scholar 

  48. Dupaul-Chicoine J, Dagenais M, Saleh M: Crosstalk Between the Intestinal Microbiota and the Innate Immune System in Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2013.

    Google Scholar 

  49. Kapp K, Maul J, Hostmann A, Mundt P, Preiss JC, Wenzel A, Thiel A, Zeitz M, Ullrich R, Duchmann R: Modulation of systemic antigen-specific immune responses by oral antigen in humans. Eur J Immunol 2010, 40(11):3128–3137.

    Article  CAS  Google Scholar 

  50. Cassani B, Villablanca EJ, Quintana FJ, Love PE, Lacy-Hulbert A, Blaner WS, Sparwasser T, Snapper SB, Weiner HL, Mora JR: Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 2011, 141(6):2109–2118.

    Article  CAS  Google Scholar 

  51. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O: Intestinal tolerance requires gut homing and expansion of FoxP3+regulatory T cells in the lamina propria. Immunity 2011, 34(2):237–246.

    Article  CAS  Google Scholar 

  52. Torgerson TR, Linane A, Moes N, Anover S, Mateo V, Rieux-Laucat F, Hermine O, Vijay S, Gambineri E, Cerf-Bensussan N et al: Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 2007, 132(5):1705–1717.

    Article  CAS  Google Scholar 

  53. Zennaro D, Scala E, Pomponi D, Caprini E, Arcelli D, Gambineri E, Russo G, Mari A: Proteomics plus genomics approaches in primary immunodeficiency: the case of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Clin Exp Immunol 2012, 167(1):120–128.

    Article  CAS  Google Scholar 

  54. Karlsson MR, Rugtveit J, Brandtzaeg P: Allergen-responsive CD4+CD25+regulatory T cells in children who have outgrown cow s milk allergy. J Exp Med 2004, 199(12):1679–1688.

    Article  CAS  Google Scholar 

  55. Shreffler WG, Wanich N, Moloney M, Nowak-Wegrzyn A, Sampson HA: Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J Allergy Clin Immunol 2009, 123(1):43–52 e47.

    Google Scholar 

  56. Suzuki H, Sekine S, Kataoka K, Pascual DW, Maddaloni M, Kobayashi R, Fujihashi K, Kozono H, McGhee JR: Ovalbumin-protein sigma 1 M-cell targeting facilitates oral tolerance with reduction of antigen-specific CD4+T cells. Gastroenterology 2008, 135(3):917–925.

    Article  Google Scholar 

  57. Rynda A, Maddaloni M, Mierzejewska D, Ochoa-Reparaz J, Maslanka T, Crist K, Riccardi C, Barszczewska B, Fujihashi K, McGhee JR et al: Low-dose tolerance is mediated by the micro fold cell ligand, reovirus protein sigma1. J Immunol 2008, 180(8):5187–5200.

    Article  CAS  Google Scholar 

  58. Spahn TW, Weiner HL, Rennert PD, Lugering N, Fontana A, Domschke W, Kucharzik T: Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer s patches. Eur J Immunol 2002, 32(4):1109–1113.

    Article  CAS  Google Scholar 

  59. Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, Koni PA, Ruddle NH, Flavell RA, Rennert PD et al: Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 2001, 31(4):1278–1287.

    Article  CAS  Google Scholar 

  60. Kraus TA, Brimnes J, Muong C, Liu JH, Moran TM, Tappenden KA, Boros P, Mayer L: Induction of mucosal tolerance in Peyer s patch-deficient, ligated small bowel loops. J Clin Invest 2005, 115(8):2234–2243.

    Article  CAS  Google Scholar 

  61. Macpherson AJ, Smith K: Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006, 203(3):497–500.

    Article  CAS  Google Scholar 

  62. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Forster R, Pabst O: Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006, 203(3):519–527.

    Article  CAS  Google Scholar 

  63. Viney JL, Mowat AM, O’Malley JM, Williamson E, Fanger NA: Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998, 160(12):5815–5825.

    CAS  Google Scholar 

  64. Chirdo FG, Millington OR, Beacock-Sharp H, Mowat AM: Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol 2005, 35(6):1831–1840.

    Article  CAS  Google Scholar 

  65. Mowat AM: Dendritic cells and immune responses to orally administered antigens. Vaccine 2005, 23(15):1797–1799.

    Article  CAS  Google Scholar 

  66. Peng HJ, Turner MW, Strobel S: The generation of a tolerogen after the ingestion of ovalbumin is time-dependent and unrelated to serum levels of immunoreactive antigen. Clin Exp Immunol 1990, 81(3):510–515.

    Article  CAS  Google Scholar 

  67. Almqvist N, Lonnqvist A, Hultkrantz S, Rask C, Telemo E: Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology 2008, 125(1):21–27.

    Article  CAS  Google Scholar 

  68. Thomson AW, Knolle PA: Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010, 10(11):753–766.

    Article  CAS  Google Scholar 

  69. Menard S, Cerf-Bensussan N, Heyman M: Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 2010, 3(3):247–259.

    Article  CAS  Google Scholar 

  70. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ: Goblet cells deliver luminal antigen to CD103+dendritic cells in the small intestine. Nature 2012, 483(7389):345–349.

    Article  CAS  Google Scholar 

  71. Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A, Schwab SR, Littman DR: Micro biota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013, 494(7435):116–120.

    Article  CAS  Google Scholar 

  72. Harden JL, Egilmez NK: Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest 2012, 41(6–7):738–764.

    Article  CAS  Google Scholar 

  73. Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U, Mowat AM, Milling SW: Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol 2013, 6(1):104–113.

    Article  CAS  Google Scholar 

  74. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P et al: Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 2006, 314(5802):1157–1160.

    Article  CAS  Google Scholar 

  75. Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Forster R, Pabst O: Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 2008, 205(11):2483–2490.

    Article  CAS  Google Scholar 

  76. Hooper LV, Littman DR, Macpherson AJ: Interactions between the microbiota and the immune system. Science 2012, 336(6086):1268–1273.

    Article  CAS  Google Scholar 

  77. Bashir ME, Louie S, Shi HN, Nagler-Anderson C: Toll-like receptor 4 signaling by intestinal micro bes influences susceptibility to food allergy. J Immunol 2004, 172(11):6978–6987.

    Article  CAS  Google Scholar 

  78. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, Kambayashi T, Larosa DF, Renner ED, Orange JS et al: Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 2012, 18(4):538–546.

    Article  CAS  Google Scholar 

  79. Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M, Chehoud C, Kuczynski J, DeSantis T, Warrington J et al: A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol 2013, 131(1):201–212.

    Article  CAS  Google Scholar 

  80. Thompson-Chagoyan OC, Fallani M, Maldonado J, Vieites JM, Khanna S, Edwards C, Dore J, Gil A: Faecal microbiota and short-chain fatty acid levels in faeces from infants with cow’s milk protein allergy. Int Arch Allergy Immunol 2011, 156(3):325–332.

    Article  CAS  Google Scholar 

  81. Thompson-Chagoyan OC, Vieites JM, Maldonado J, Edwards C, Gil A: Changes in faecal microbiota of infants with cow’s milk protein allergy-a Spanish prospective case-control 6-month follow-up study. Pediatr Allergy Immunol 2010, 21(2 Pt 2):e394–400.

    Article  Google Scholar 

  82. Rodriguez B, Prioult G, Hacini-Rachinel F, Moine D, Bruttin A, Ngom-Bru C, Labellie C, Nicolis I, Berger B, Mercenier A et al. Infant gut microbiota is protective against cow’s milk allergy in mice despite immature ileal T-cell response. FEMS Microbiol Ecol 2012, 79(1):192–202.

    Article  CAS  Google Scholar 

  83. Upadhyay V, Poroyko V, Kim TJ, Devkota S, Fu S, Liu D, Tumanov AV, Koroleva EP, Deng L, Nagler C et al: Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat Immunol 2012, 13(10):947–953.

    Article  CAS  Google Scholar 

  84. Visness CM, London SJ, Daniels JL, Kaufman JS, Yeatts KB, Siega-Riz AM, Liu AH, Calatroni A, Zeldin DC: Association of obesity with IgE levels and allergy symptoms in children and adolescents: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol 2009, 123(5):1163–1169, 1169 e1161–1164.

    Article  Google Scholar 

  85. Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW, Naik S, Wohlfert EA, Chou DB, Oldenhove G, Robinson M et al: Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity 2011, 34(3):435–447.

    Article  CAS  Google Scholar 

  86. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, Marietta EV, Kasarda DD, Waldmann TA, Murray JA et al: Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011, 471(7337):220–224.

    Article  CAS  Google Scholar 

  87. Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT: Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci U S A 2008, 105(52):20834–20839.

    Article  CAS  Google Scholar 

  88. Sharief S, Jariwala S, Kumar J, Muntner P, Melamed ML: Vitamin D levels and food and environmental allergies in the United States: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol 2011, 127(5):1195–1202.

    Article  CAS  Google Scholar 

  89. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A: Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334(6062):1561–1565.

    Article  CAS  Google Scholar 

  90. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M: Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147(3):629–640.

    Article  CAS  Google Scholar 

  91. Schulz VJ, Smit JJ, Willemsen KJ, Fiechter D, Hassing I, Bleumink R, Boon L, van den Berg M, van Duursen MB, Pieters RH: Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model. Toxicol Sci 2011, 123(2):491–500.

    Article  CAS  Google Scholar 

  92. Schulz VJ, Smit JJ, Huijgen V, Bol-Schoenmakers M, van Roest M, Kruijssen LJ, Fiechter D, Hassing I, Bleumink R, Safe S et al: Non-dioxin-like AhR ligands in a mouse peanut allergy model. Toxicol Sci 2012, 128(1):92–102.

    Article  CAS  Google Scholar 

  93. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008, 453(7191):65–71.

    Article  CAS  Google Scholar 

  94. Okada Y, Oh-oka K, Nakamura Y, Ishimaru K, Matsuoka S, Okumura K, Ogawa H, Hisamoto M, Okuda T, Nakao A: Dietary resveratrol prevents the development of food allergy in mice. PLoS One 2012, 7(9):e44338.

    Article  CAS  Google Scholar 

  95. Blazquez AB, Berin MC: Gastrointestinal dendritic cells promote Th2 skewing via OX40 L. J Immunol 2008, 180(7):4441–4450.

    Article  CAS  Google Scholar 

  96. Ziegler SF, Artis D: Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 2010, 11(4):289–293.

    Article  CAS  Google Scholar 

  97. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, Moore CL, Seunghyun In T, Waserman S, Coyle AJ et al: IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 2013, 131(1):187–200 e181–188.

    Google Scholar 

  98. Yang Z, Sun R, Grinchuk V, Blanco JA, Notari L, Bohl JA, McLean LP, Ramalingam TR, Wynn TA, Urban JF, Jr. et al: IL-33-induced alterations in murine intestinal function and cytokine responses are MyD88, STAT6, and IL-13 dependent. Am J Physiol Gastrointest Liver Physiol 2013, 304(4):G381–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Ćirković Veličković .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ćirković Veličković, T., Gavrović-Jankulović, M. (2014). Food Allergy and Gastrointestinal Tract. In: Food Allergens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0841-7_1

Download citation

Publish with us

Policies and ethics