The Impact of DNA Damage on Epithelial Cell Maintenance of the Lung

  • Lidza Kalifa
  • Michael A. O’ReillyEmail author
Part of the Respiratory Medicine book series (RM, volume 15)


The primary function of the lung is to facilitate the exchange of oxygen and carbon dioxide between air and blood and to exclude or defend against infectious agents and other airborne pollutants. As such, the respiratory epithelium is under constant attack by reactive oxygen species derived from metabolic respiration and the inflammatory response to pathogens in the airway. While reactive oxygen species can damage all macromolecules, oxidative damage to DNA is of great importance because it can affect how cells and hence organs function. DNA lesions activate a family of phosphatidylinositol-3 kinase-related kinases (PIKKs) that phosphorylate numerous substrates, including the tumor suppressor p53, which is critically important for maintaining genome integrity. While oxidized DNA is historically thought to be detrimental to cell function, emerging evidence suggest that it may also be an important post-replication modification that controls gene expression. Understanding how oxidation of nuclear and mitochondrial DNA affects cell function could provide new opportunities for treating lung diseases attributed to oxidant injury to the respiratory epithelium.


Reactive oxygen species DNA damage Mitochondria Nucleus Cell signaling 



The authors’ research is supported in part by National Institutes of Health grants HL067392, HL091968, and HL097141 to M. O’Reilly and NIH Training Grant ES07026 to L. Kalifa.


  1. 1.
    von Wichert P, Seifart C. The lung, an organ for absorption? Respiration. 2005;72:552–8.Google Scholar
  2. 2.
    Pinkerton KE, Joad JP. The mammalian respiratory system and critical windows of exposure for children’s health. Environ Health Perspect. 2000;108 Suppl 3:457–62.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J. 2004;23:327–33.PubMedGoogle Scholar
  4. 4.
    Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev. 2000;173:27–38.PubMedGoogle Scholar
  5. 5.
    Cardoso WV, Whitsett JA. Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc. 2008;5:767–71.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Beers MF, Morrisey EE. The three r’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest. 2011;121:2065–73.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003;167:1600–19.PubMedGoogle Scholar
  8. 8.
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Scheffler EI. Mitochondria. New York: Wiley; 2008.Google Scholar
  10. 10.
    Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by nadh-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977;180:248–57.PubMedGoogle Scholar
  11. 11.
    Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial complex I. Biochim Biophys Acta. 2006;1757:553–61.PubMedGoogle Scholar
  12. 12.
    Kussmaul L, Hirst J. The mechanism of superoxide production by nadh: Ubiquinone oxidoreductase (complex i) from bovine heart mitochondria. Proc Natl Acad Sci U S A. 2006;103:7607–12.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–31.PubMedGoogle Scholar
  14. 14.
    Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279:49064–73.PubMedGoogle Scholar
  15. 15.
    McLennan HR, Degli Esposti M. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr. 2000;32:153–62.PubMedGoogle Scholar
  16. 16.
    Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and bcl-2 family proteins. FEBS Lett. 2006;580:5125–9.PubMedGoogle Scholar
  17. 17.
    Knaapen AM, Gungor N, Schins RP, Borm PJ, Van Schooten FJ. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis. 2006;21:225–36.PubMedGoogle Scholar
  18. 18.
    Vallyathan V, Shi X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect. 1997;105 Suppl 1:165–77.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Asikainen TM, Raivio KO, Saksela M, Kinnula VL. Expression and developmental profile of antioxidant enzymes in human lung and liver. Am J Respir Cell Mol Biol. 1998;19:942–9.PubMedGoogle Scholar
  20. 20.
    Clerch LB, Massaro D. Rat lung antioxidant enzymes: differences in perinatal gene expression and regulation. Am J Physiol. 1992;263:L466–70.PubMedGoogle Scholar
  21. 21.
    Tanswell AK, Freeman BA. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles. Pediatr Res. 1984;18:584–7.PubMedGoogle Scholar
  22. 22.
    Frank L, Groseclose EE. Preparation for birth into an o2-rich environment: the antioxidant enzymes in the developing rabbit lung. Pediatr Res. 1984;18:240–4.PubMedGoogle Scholar
  23. 23.
    Staversky RJ, Vitiello PF, Yee M, Callahan LM, Dean DA, O’Reilly MA. Epithelial ablation of bcl-xl increases sensitivity to oxygen without disrupting lung development. Am J Respir Cell Mol Biol. 2010;43:376–85.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bartz RR, Piantadosi CA. Clinical review: oxygen as a signaling molecule. Crit Care. 2010;14:234.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedGoogle Scholar
  26. 26.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.PubMedGoogle Scholar
  27. 27.
    Lindahl T, Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972;11:3618–23.PubMedGoogle Scholar
  28. 28.
    Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972;11:3610–8.PubMedGoogle Scholar
  29. 29.
    Nakamura J, Swenberg JA. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999;59:2522–6.PubMedGoogle Scholar
  30. 30.
    Barker GF, Manzo ND, Cotich KL, Shone RK, Waxman AB. DNA damage induced by hyperoxia: quantitation and correlation with lung injury. Am J Respir Cell Mol Biol. 2006;35:277–88.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Panayiotidis MI, Rancourt RC, Allen CB, Riddle SR, Schneider BK, Ahmad S, White CW. Hyperoxia-induced DNA damage causes decreased DNA methylation in human lung epithelial-like a549 cells. Antioxid Redox Signal. 2004;6:129–36.PubMedGoogle Scholar
  32. 32.
    Roper JM, Mazzatti DJ, Watkins RH, Maniscalco WM, Keng PC, O’Reilly MA. In vivo exposure to hyperoxia induces DNA damage in a population of alveolar type ii epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;286:L1045–54.PubMedGoogle Scholar
  33. 33.
    Gille JJ, van Berkel CG, Joenje H. Mechanism of hyperoxia-induced chromosomal breakage in chinese hamster cells. Environ Mol Mutagen. 1993;22:264–70.PubMedGoogle Scholar
  34. 34.
    Burcham PC. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis. 1998;13:287–305.PubMedGoogle Scholar
  35. 35.
    Knaapen AM, Seiler F, Schilderman PA, Nehls P, Bruch J, Schins RP, Borm PJ. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic Biol Med. 1999;27: 234–40.PubMedGoogle Scholar
  36. 36.
    Adamson IY, Bowden DH. Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung. Am J Pathol. 1979;96:531–44.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Adamson IY, Bowden DH. The pathogenesis of bloemycin-induced pulmonary fibrosis in mice. Am J Pathol. 1974;77:185–97.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Deslee G, Adair-Kirk TL, Betsuyaku T, Woods JC, Moore CH, Gierada DS, Conradi SH, Atkinson JJ, Toennies HM, Battaile JT, Kobayashi DK, Patterson GA, Holtzman MJ, Pierce RA. Cigarette smoke induces nucleic-acid oxidation in lung fibroblasts. Am J Respir Cell Mol Biol. 2010;43:576–84.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell. 2004;118:9–17.PubMedGoogle Scholar
  40. 40.
    Adamson IY, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol. 1988;130:377–83.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Deslee G, Woods JC, Moore C, Conradi SH, Gierada DS, Atkinson JJ, Battaile JT, Liu L, Patterson GA, Adair-Kirk TL, Holtzman MJ, Pierce RA. Oxidative damage to nucleic acids in severe emphysema. Chest. 2009;135:965–74.PubMedGoogle Scholar
  42. 42.
    Williamson WD, Pinto I. Histones and genome integrity. Front Biosci. 2012;17:984–95.Google Scholar
  43. 43.
    Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–35.PubMedGoogle Scholar
  44. 44.
    Iborra FJ, Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2004;2:9.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94:514–9.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Santos JH, Mandavilli BS, Van Houten B. Measuring oxidative mtdna damage and repair using quantitative pcr. Methods Mol Biol. 2002;197:159–76.PubMedGoogle Scholar
  47. 47.
    Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst). 2006;5:145–52.Google Scholar
  48. 48.
    Auten RL, Whorton MH, Nicholas Mason S. Blocking neutrophil influx reduces DNA damage in hyperoxia-exposed newborn rat lung. Am J Respir Cell Mol Biol. 2002;26:391–7.PubMedGoogle Scholar
  49. 49.
    Oka S, Ohno M, Tsuchimoto D, Sakumi K, Furuichi M, Nakabeppu Y. Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial dnas. EMBO J. 2008;27:421–32.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37:2539–48.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Furda AM, Marrangoni AM, Lokshin A, Van Houten B. Oxidants and not alkylating agents induce rapid mtdna loss and mitochondrial dysfunction. DNA Repair (Amst). 2012;11: 684–92.Google Scholar
  52. 52.
    Hori A, Yoshida M, Shibata T, Ling F. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic Acids Res. 2009;37:749–61.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J. 2000;348(Pt 2):425–32.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, Chi CW, Tam TN, Wei YH. Mitochondrial genome instability and mtdna depletion in human cancers. Ann N Y Acad Sci. 2005;1042:109–22.PubMedGoogle Scholar
  55. 55.
    Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (merrf) is associated with a mitochondrial DNA trna(lys) mutation. Cell. 1990;61:931–7.PubMedGoogle Scholar
  56. 56.
    Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous kearns-sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: A slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A. 1989;86:7952–6.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Venclovas C, Thelen MP. Structure-based predictions of rad1, rad9, hus1 and rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 2000;28:2481–93.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Parrilla-Castellar ER, Arlander SJH, Karnitz L. Dial 9-1-1 for DNA damage: The rad9-hus1-rad1 (9-1-1) clamp complex. DNA Repair. 2004;3:1009–14.PubMedGoogle Scholar
  59. 59.
    Volkmer E, Karnitz LM. Human homologs of schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex. J Biol Chem. 1999;274:567–70.PubMedGoogle Scholar
  60. 60.
    Weiss RS, Leder P, Vaziri C. Critical role for mouse hus1 in an s-phase DNA damage cell cycle checkpoint. Mol Cell Biol. 2003;23:791–803.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Weiss RS, Matsuoka S, Elledge SJ, Leder P. Hus1 acts upstream of chk1 in a mammalian DNA damage response pathway. Curr Biol. 2002;12:73–7.PubMedGoogle Scholar
  62. 62.
    Weiss RS, Enoch T, Leder P. Inactivation of mouse hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 2000;14:1886–98.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the mrn complex for atm activation by DNA damage. EMBO J. 2003;22:5612–21.PubMedCentralPubMedGoogle Scholar
  64. 64.
    van den Bosch M, Bree RT, Lowndes NF. The mrn complex: coordinating and mediating the response to broken chromosomes. EMBO Rep. 2003;4:844–9.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Petrini JH, Stracker TH. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol. 2003;13:458–62.PubMedGoogle Scholar
  66. 66.
    D’Amours D, Jackson SP. The mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol. 2002;3:317–27.PubMedGoogle Scholar
  67. 67.
    Ting NS, Lee WH. The DNA double-strand break response pathway: becoming more brcaish than ever. DNA Repair (Amst). 2004;3:935–44.Google Scholar
  68. 68.
    Fishel R. Signaling mismatch repair in cancer. Nat Med. 1999;5:1239–41.PubMedGoogle Scholar
  69. 69.
    Rossi MN, Carbone M, Mostocotto C, Mancone C, Tripodi M, Maione R, Amati P. Mitochondrial localization of parp-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J Biol Chem. 2009;284:31616–24.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kalifa L, Quintana DF, Schiraldi LK, Phadnis N, Coles GL, Sia RA, Sia EA. Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in saccharomyces cerevisiae. Genetics. 2012;190:951–64.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Yamamoto M, Nishiuma T, Kobayashi K, Maniwa Y, Sakashita A, Funada Y, Kotani Y, Nishimura Y. Rad9 is upregulated and plays protective roles in an acute lung injury model. Biochem Biophys Res Commun. 2008;376:590–4.PubMedGoogle Scholar
  72. 72.
    Uchisaka N, Takahashi N, Sato M, Kikuchi A, Mochizuki S, Imai K, Nonoyama S, Ohara O, Watanabe F, Mizutani S, Hanada R, Morio T. Two brothers with ataxia-telangiectasia-like disorder with lung adenocarcinoma. J Pediatr. 2009;155:435–8.PubMedGoogle Scholar
  73. 73.
    Chrzanowska KH, Gregorek H, Dembowska-Baginska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (nbs). Orphanet J Rare Dis. 2012;7:13.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Lempiainen H, Halazonetis TD. Emerging common themes in regulation of pikks and pi3ks. EMBO J. 2009;28:3067–73.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Helt CE, Cliby WA, Keng PC, Bambara RA, O’Reilly MA. Ataxia telangiectasia mutated (atm) and atm and rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem. 2005;280:1186–92.PubMedGoogle Scholar
  77. 77.
    Brown EJ, Baltimore D. Atr disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000;14:397–402.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, Cleveland JL, Green DR, Kastan MB. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;119:1490–500.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunction in atm-deficient lymphoblastoid cells. Hum Mol Genet. 2007;16:2154–64.PubMedGoogle Scholar
  80. 80.
    Patel AY, McDonald TM, Spears LD, Ching JK, Fisher JS. Ataxia telangiectasia mutated influences cytochrome c oxidase activity. Biochem Biophys Res Commun. 2011;405:599–603.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Zhang N, Chen P, Khanna KK, Scott S, Gatei M, Kozlov S, Watters D, Spring K, Yen T, Lavin MF. Isolation of full-length atm cdna and correction of the ataxia-telangiectasia cellular phenotype. Proc Natl Acad Sci U S A. 1997;94:8021–6.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Lavin MF, Gueven N, Bottle S, Gatti RA. Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull. 2007;81–82:129–47.PubMedGoogle Scholar
  83. 83.
    Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl). 2004;82:510–29.Google Scholar
  84. 84.
    Bott L, Lebreton J, Thumerelle C, Cuvellier J, Deschildre A, Sardet A. Lung disease in ataxia-telangiectasia. Acta Paediatr. 2007;96:1021–4.PubMedGoogle Scholar
  85. 85.
    Crawford TO, Skolasky RL, Fernandez R, Rosquist KJ, Lederman HM. Survival probability in ataxia telangiectasia. Arch Dis Child. 2006;91:610–1.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Lockman JL, Iskander AJ, Bembea M, Crawford TO, Lederman HM, McGrath-Morrow S, Easley RB. The critically ill patient with ataxia-telangiectasia: a case series. Pediatr Crit Care Med. 2012;13:e84–90.PubMedGoogle Scholar
  87. 87.
    McGrath-Morrow SA, Gower WA, Rothblum-Oviatt C, Brody AS, Langston C, Fan LL, Lefton-Greif MA, Crawford TO, Troche M, Sandlund JT, Auwaerter PG, Easley B, Loughlin GM, Carroll JL, Lederman HM. Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr Pulmonol. 2010;45:847–59.PubMedGoogle Scholar
  88. 88.
    Kulkarni A, Das KC. Differential roles of atr and atm in p53, chk1, and histone h2ax phosphorylation in response to hyperoxia: Atr-dependent atm activation. Am J Physiol Lung Cell Mol Physiol. 2008;294:L998–1006.PubMedGoogle Scholar
  89. 89.
    Gehen SC, Staversky RJ, Bambara RA, Keng PC, O’Reilly MA. Hsmg-1 and atm sequentially and independently regulate the g1 checkpoint during oxidative stress. Oncogene. 2008;27:4065–74.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the atm kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.PubMedGoogle Scholar
  91. 91.
    Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT. A role for atr in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13:152–7.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Lakin ND, Hann BC, Jackson SP. The ataxia-telangiectasia related protein atr mediates DNA-dependent phosphorylation of p53. Oncogene. 1999;18:3989–95.PubMedGoogle Scholar
  93. 93.
    Hall-Jackson CA, Cross DA, Morrice N, Smythe C. Atr is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-pk. Oncogene. 1999;18:6707–13.PubMedGoogle Scholar
  94. 94.
    Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y. Enhanced phosphorylation of p53 by atm in response to DNA damage. Science. 1998;281:1674–7.PubMedGoogle Scholar
  95. 95.
    De S, Kumari J, Mudgal R, Modi P, Gupta S, Futami K, Goto H, Lindor NM, Furuichi Y, Mohanty D, Sengupta S. Recql4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci. 2012;125:2509–22.PubMedGoogle Scholar
  96. 96.
    Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK. P53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005;65:3745–50.PubMedGoogle Scholar
  97. 97.
    Koczor CA, White RC, Zhao P, Zhu L, Fields E, Lewis W. P53 and mitochondrial DNA: their role in mitochondrial homeostasis and toxicity of antiretrovirals. Am J Pathol. 2012;180:2276–83.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P. Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA pol gamma. EMBO J. 2005;24:3482–92.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Nilsen H, Krokan HE. Base excision repair in a network of defence and tolerance. Carcinogenesis. 2001;22:987–98.PubMedGoogle Scholar
  100. 100.
    Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology. 2003;193:3–34.PubMedGoogle Scholar
  101. 101.
    Blomquist T, Crawford EL, Mullins D, Yoon Y, Hernandez DA, Khuder S, Ruppel PL, Peters E, Oldfield DJ, Austermiller B, Anders JC, Willey JC. Pattern of antioxidant and DNA repair gene expression in normal airway epithelium associated with lung cancer diagnosis. Cancer Res. 2009;69:8629–35.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Sugimura H, Kohno T, Wakai K, Nagura K, Genka K, Igarashi H, Morris BJ, Baba S, Ohno Y, Gao C, Li Z, Wang J, Takezaki T, Tajima K, Varga T, Sawaguchi T, Lum JK, Martinson JJ, Tsugane S, Iwamasa T, Shinmura K, Yokota J. Hogg1 ser326cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1999;8:669–74.PubMedGoogle Scholar
  103. 103.
    Grishko VI, Rachek LI, Spitz DR, Wilson GL, LeDoux SP. Contribution of mitochondrial DNA repair to cell resistance from oxidative stress. J Biol Chem. 2005;280:8901–5.PubMedGoogle Scholar
  104. 104.
    Ohba T, Kometani T, Shoji F, Yano T, Yoshino I, Taguchi K, Kuraoka I, Oda S, Maehara Y. Expression of an x-family DNA polymerase, pol lambda, in the respiratory epithelium of non-small cell lung cancer patients with habitual smoking. Mutat Res. 2009;677:66–71.PubMedGoogle Scholar
  105. 105.
    Adrain C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci. 2001;26:390–7.PubMedGoogle Scholar
  106. 106.
    Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. P53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–48.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2012;20(1):31–42.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol. 2012;95:457–63.PubMedGoogle Scholar
  109. 109.
    O’Donovan DJ, Fernandes CJ. Mitochondrial glutathione and oxidative stress: Implications for pulmonary oxygen toxicity in premature infants. Mol Genet Metab. 2000;71:352–8.PubMedGoogle Scholar
  110. 110.
    Ahmad S, White CW, Chang LY, Schneider BK, Allen CB. Glutamine protects mitochondrial structure and function in oxygen toxicity. Am J Physiol Lung Cell Mol Physiol. 2001;280:L779–91.PubMedGoogle Scholar
  111. 111.
    Ratner V, Starkov A, Matsiukevich D, Polin RA, Ten VS. Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol. 2009;40:511–8.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Bredemeyer AL, Helmink BA, Innes CL, Calderon B, McGinnis LM, Mahowald GK, Gapud EJ, Walker LM, Collins JB, Weaver BK, Mandik-Nayak L, Schreiber RD, Allen PM, May MJ, Paules RS, Bassing CH, Sleckman BP. DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature. 2008;456:819–23.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Sherman MH, Kuraishy AI, Deshpande C, Hong JS, Cacalano NA, Gatti RA, Manis JP, Damore MA, Pellegrini M, Teitell MA. Aid-induced genotoxic stress promotes b cell differentiation in the germinal center via atm and lkb1 signaling. Mol Cell. 2010;39: 873–85.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–9.PubMedGoogle Scholar
  115. 115.
    Maimets T, Neganova I, Armstrong L, Lako M. Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene. 2008;27:5277–87.PubMedGoogle Scholar
  116. 116.
    Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J, Li J, Song Z, Qu X, Zhou P, Wu J, Ding M, Deng H. Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem. 2007;282:5842–52.PubMedGoogle Scholar
  117. 117.
    Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y. P53 induces differentiation of mouse embryonic stem cells by suppressing nanog expression. Nat Cell Biol. 2005;7:165–71.PubMedGoogle Scholar
  118. 118.
    Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC. P53 regulates cell cycle and micrornas to promote differentiation of human embryonic stem cells. PLoS Biol. 2012;10:e1001268.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Li M, He Y, Dubois W, Wu X, Shi J, Huang J. Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell. 2012;46:30–42.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Abdelalim EM, Tooyama I. The p53 inhibitor, pifithrin-alpha, suppresses self-renewal of embryonic stem cells. Biochem Biophys Res Commun. 2012;420:605–10.PubMedGoogle Scholar
  121. 121.
    Blackledge NP, Klose R. Cpg island chromatin: a platform for gene regulation. Epigenetics. 2011;6:147–52.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med. 2011;183:1295–301.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Haberg SE, London SJ, Stigum H, Nafstad P, Nystad W. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child. 2009;94:180–4.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Whitrow MJ, Moore VM, Rumbold AR, Davies MJ. Effect of supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am J Epidemiol. 2009;170:1486–93.PubMedGoogle Scholar
  125. 125.
    Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, Bailey N, Potts EN, Whitehead G, Brass DM, Schwartz DA. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008;118:3462–9.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Joss-Moore LA, Wang Y, Ogata EM, Sainz AJ, Yu X, Callaway CW, McKnight RA, Albertine KH, Lane RH. Iugr differentially alters mecp2 expression and h3k9me3 of the ppargamma gene in male and female rat lungs during alveolarization. Birth Defects Res A Clin Mol Teratol. 2011;91:672–81.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Joss-Moore LA, Wang Y, Baack ML, Yao J, Norris AW, Yu X, Callaway CW, McKnight RA, Albertine KH, Lane RH. Iugr decreases ppargamma and setd8 expression in neonatal rat lung and these effects are ameliorated by maternal dha supplementation. Early Hum Dev. 2010;86:785–91.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Simon DM, Arikan MC, Srisuma S, Bhattacharya S, Tsai LW, Ingenito EP, Gonzalez F, Shapiro SD, Mariani TJ. Epithelial cell ppar[gamma] contributes to normal lung maturation. FASEB J. 2006;20:1507–9.PubMedGoogle Scholar
  129. 129.
    Ruchko MV, Gorodnya OM, Pastukh VM, Swiger BM, Middleton NS, Wilson GL, Gillespie MN. Hypoxia-induced oxidative base modifications in the vegf hypoxia-response element are associated with transcriptionally active nucleosomes. Free Radic Biol Med. 2009;46:352–9.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Al-Mehdi AB, Pastukh VM, Swiger BM, Reed DJ, Patel MR, Bardwell GC, Pastukh VV, Alexeyev MF, Gillespie MN. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal. 2012;5:ra47.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Pastukh V, Ruchko M, Gorodnya O, Wilson GL, Gillespie MN. Sequence-specific oxidative base modifications in hypoxia-inducible genes. Free Radic Biol Med. 2007;43:1616–26.PubMedGoogle Scholar
  132. 132.
    Pastukh VM, Zhang L, Ruchko MV, Gorodnya O, Bardwell GC, Tuder RM, Gillespie MN. Oxidative DNA damage in lung tissue from patients with copd is clustered in functionally significant sequences. Int J Chron Obstruct Pulmon Dis. 2011;6:209–17.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Ziel KA, Campbell CC, Wilson GL, Gillespie MN. Ref-1/ape is critical for formation of the hypoxia-inducible transcriptional complex on the hypoxic response element of the rat pulmonary artery endothelial cell vegf gene. FASEB J. 2004;18:986–8.PubMedGoogle Scholar
  134. 134.
    Flaherty DM, Monick MM, Hunninghake GW. Ap endonucleases and the many functions of ref-1. Am J Respir Cell Mol Biol. 2001;25:664–7.PubMedGoogle Scholar
  135. 135.
    Tell G, Pines A, Paron I, D’Elia A, Bisca A, Kelley MR, Manzini G, Damante G. Redox effector factor-1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the n transcriptional activation domain. J Biol Chem. 2002;277:14564–74.PubMedGoogle Scholar
  136. 136.
    Maeda Y, Hunter TC, Loudy DE, Dave V, Schreiber V, Whitsett JA. Parp-2 interacts with ttf-1 and regulates expression of surfactant protein-b. J Biol Chem. 2006;281:9600–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PediatricsSchool of Medicine and Dentistry, The University of RochesterRochesterUSA

Personalised recommendations