Mitochondrial Lipid Peroxidation in Lung Damage and Disease

  • Sainath R. Kotha
  • Travis O. Gurney
  • Miles U. Magalang
  • Thomas J. Hund
  • Abhay R. Satoskar
  • Peter J. Mohler
  • Krishna Rao Maddipati
  • Viswanathan Natarajan
  • Narasimham L. ParinandiEmail author
Part of the Respiratory Medicine book series (RM, volume 15)


Eukaryotic cells possess distinct and double-membrane encapsulated organelles, the mitochondria. The mitochondrion is the powerhouse of the cell responsible for energy production through oxidative phosphorylation. A dark side of the mitochondrion is its ability to generate reactive oxygen species (ROS) at specific sites of electron transport chain (ETC) arising from incomplete reduction of molecular oxygen. The mitochondrion is not only a source of toxic ROS but also their target and thus becomes vulnerable to oxidative attack. The ROS-mediated peroxidation of polyunsaturated fatty acids in mitochondrial membrane lipids leads to cell damage and injury of the tissue leading to pathophysiological states. The mitochondrial inner membrane that houses the ETC responsible for the cellular bioenergetics possesses a unique phospholipid, cardiolipin (CL), which is rich in polyunsaturated fatty acids susceptible to the ROS-induced peroxidation. Peroxidized CL has emerged as an important player in the mitochondria-driven oxidant lung injury, apoptotic cell death, and lung diseases. This review discusses the nature of the mitochondrial membrane lipids, mechanisms and consequences of the ROS-induced mitochondrial lipid peroxidation, and lipoperoxidative mechanisms of lung injury and diseases. Finally the pharmacological interventions of ROS-induced lung mitochondrial lipid peroxidation and mitochondriopathy that is involved in oxidant-induced lung damage and respiratory and lung diseases are also discussed.


Mitochondria Lipid peroxidation Cardiolipin peroxides Pulmonary toxicity Respiratory and lung diseases 



The authors acknowledge the support provided by the Dorothy M. Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine of the Ohio State University College of Medicine, the National Institute of Health (HL 093463 to NLP and P01 HL 98050 to VN), and the International Academy of Oral Medicine and Toxicology (IAOMT), and the Alan D. Clark, MD, Memorial Foundation.


  1. 1.
    Brown DA, Sabbah HN, Shaikh SR. Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. Pharmacol Ther. 2013;140(3): 258–66.PubMedGoogle Scholar
  2. 2.
    Frohman MA. Mitochondria as integrators of signal transduction and energy production in cardiac physiology and disease. J Mol Med (Berl). 2010;88(10):967–70.Google Scholar
  3. 3.
    McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–60.PubMedGoogle Scholar
  4. 4.
    Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem. 2010;47:115–37.PubMedGoogle Scholar
  5. 5.
    Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal. 2012;16(10):1150–80.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711–23.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Mabalirajan U, Ghosh B. Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy (Cairo). 2013;2013:340476.Google Scholar
  8. 8.
    Whelan SP, Zuckerbraun BS. Mitochondrial signaling: forwards, backwards, and in between. Oxid Med Cell Longev. 2013;2013:351613.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev. 2007;39(2–3):443–55.PubMedGoogle Scholar
  10. 10.
    Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–83.PubMedGoogle Scholar
  11. 11.
    Anantha H, Kanteti P, Fu P, Kotha SR, Parinandi NL, Natarajan V. Role of mitochondrial reactive oxygen and nitrogen species in respiratory diseases. In: Natarajan V, Parinandi NL, editors. Mitochondrial function in lung health and disease. New York: Springer; 2014;1–25.Google Scholar
  12. 12.
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417(1):1–13.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Fruehauf JP, Meyskens Jr FL. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13(3):789–94.PubMedGoogle Scholar
  14. 14.
    Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci. 2007;257(1–2):221–39.PubMedGoogle Scholar
  15. 15.
    Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26(4):190–5.PubMedGoogle Scholar
  16. 16.
    Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, Serra MP, Poderoso JJ, Carreras MC. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood). 2009;234(9):1020–8.Google Scholar
  17. 17.
    Carreras MC, Poderoso JJ. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol. 2007;292(5):C1569–80.PubMedGoogle Scholar
  18. 18.
    O’Donovan DJ, Fernandes CJ. Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants. Mol Genet Metab. 2000;71(1–2):352–8.PubMedGoogle Scholar
  19. 19.
    Kakkar P, Singh BK. Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem. 2007;305(1–2):235–53.PubMedGoogle Scholar
  20. 20.
    Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N, Cortassa S. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol. 2012;139(6):479–91.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590–614.PubMedGoogle Scholar
  22. 22.
    Claypool SM, Koehler CM. The complexity of cardiolipin in health and disease. Trends Biochem Sci. 2012;37(1):32–41.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Schug ZT, Frezza C, Galbraith LC, Gottlieb E. The music of lipids: how lipid composition orchestrates cellular behaviour. Acta Oncol. 2012;51(3):301–10.PubMedGoogle Scholar
  24. 24.
    Schlame M, Brody S, Hostetler KY. Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur J Biochem. 1993;212(3):727–35.PubMedGoogle Scholar
  25. 25.
    Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res. 2013;52(4):513–28.PubMedGoogle Scholar
  26. 26.
    Schlame M. Assays of cardiolipin levels. Methods Cell Biol. 2007;80:223–40.PubMedGoogle Scholar
  27. 27.
    Yan Y, Kang B. The role of cardiolipin remodeling in mitochondrial function and human diseases. J Mol Biol Res. 2012;2(1):1–11.Google Scholar
  28. 28.
    Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292(1):C33–44.PubMedGoogle Scholar
  29. 29.
    Schlame M. Cardiolipin remodeling and the function of tafazzin. Biochim Biophys Acta. 2013;1831(3):582–8.PubMedGoogle Scholar
  30. 30.
    Minotti G, Aust SD. The role of iron in oxygen radical mediated lipid peroxidation. Chem Biol Interact. 1989;71(1):1–19.PubMedGoogle Scholar
  31. 31.
    Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–67.PubMedGoogle Scholar
  32. 32.
    Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med. 2003;34(2):145–69.PubMedGoogle Scholar
  33. 33.
    Shi R, Rickett T, Sun W. Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res. 2011;55(9):1320–31.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Nakagawa Y. Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol Pharm Bull. 2004;27(7):956–60.PubMedGoogle Scholar
  35. 35.
    Liang H, Van Remmen H, Frohlich V, Lechleiter J, Richardson A, Ran Q. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem Biophys Res Commun. 2007;356(4):893–8.PubMedGoogle Scholar
  36. 36.
    Garry MR, Kavanagh TJ, Faustman EM, Sidhu JS, Liao R, Ware C, Vliet PA, Deeb SS. Sensitivity of mouse lung fibroblasts heterozygous for GPx4 to oxidative stress. Free Radic Biol Med. 2008;44(6):1075–87.PubMedGoogle Scholar
  37. 37.
    Parinandi NL, Weis BK, Schmid HH. Assay of cardiolipin peroxidation by high-performance liquid chromatography. Chem Phys Lipids. 1988;49(3):215–20.PubMedGoogle Scholar
  38. 38.
    Parinandi NL, Weis BK, Natarajan V, Schmid HH. Peroxidative modification of phospholipids in myocardial membranes. Arch Biochem Biophys. 1990;280(1):45–52.PubMedGoogle Scholar
  39. 39.
    Belikova NA, Jiang J, Tyurina YY, Zhao Q, Epperly MW, Greenberger J, Kagan VE. Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. Int J Radiat Oncol Biol Phys. 2007;69(1):176–86.PubMedGoogle Scholar
  40. 40.
    Tyurina YY, Kini V, Tyurin VA, Vlasova II, Jiang J, Kapralov AA, Belikova NA, Yalowich JC, Kurnikov IV, Kagan VE. Mechanisms of cardiolipin oxidation by cytochrome c: relevance to pro- and antiapoptotic functions of etoposide. Mol Pharmacol. 2006;70(2):706–17.PubMedGoogle Scholar
  41. 41.
    Kim J, Minkler PE, Salomon RG, Anderson VE, Hoppel CL. Cardiolipin: characterization of distinct oxidized molecular species. J Lipid Res. 2011;52(1):125–35.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, Kagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta. 2006;1757(5–6):648–59.PubMedGoogle Scholar
  43. 43.
    Iverson SL, Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys. 2004;423(1):37–46.PubMedGoogle Scholar
  44. 44.
    Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 2009;45(6):643–50.PubMedGoogle Scholar
  45. 45.
    Huang Z, Jiang J, Tyurin VA, Zhao Q, Mnuskin A, Ren J, Belikova NA, Feng W, Kurnikov IV, Kagan VE. Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. Free Radic Biol Med. 2008;44(11):1935–44.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Montero J, Mari M, Colell A, Morales A, Basañez G, Garcia-Ruiz C, Fernández-Checa JC. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta. 2010;1797(6–7):1217–24.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J. 2000;351(Pt 1):183–93.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res. 2009;674(1–2):3–22.PubMedGoogle Scholar
  49. 49.
    Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol. 2001;12(6):449–57.PubMedGoogle Scholar
  50. 50.
    Yang CF, Shen HM, Shen Y, Zhuang ZX, Ong CN. Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells). Environ Health Perspect. 1997;105(7): 712–6.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Di Pietro A, Visalli G, Baluce B, Micale RT, La Maestra S, Spataro P, De Flora S. Multigenerational mitochondrial alterations in pneumocytes exposed to oil fly ash metals. Int J Hyg Environ Health. 2011;214(2):138–44.PubMedGoogle Scholar
  52. 52.
    Di Pietro A, Visalli G, Munaò F, Baluce B, La Maestra S, Primerano P, Corigliano F, De Flora S. Oxidative damage in human epithelial alveolar cells exposed in vitro to oil fly ash transition metals. Int J Hyg Environ Health. 2009;212(2):196–208.PubMedGoogle Scholar
  53. 53.
    Stone V, Johnston H, Clift MJ. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience. 2007;6(4):331–40.PubMedGoogle Scholar
  54. 54.
    Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res. 2010;44(1):1–46.PubMedGoogle Scholar
  55. 55.
    Garçon G, Dagher Z, Zerimech F, Ledoux F, Courcot D, Aboukais A, Puskaric E, Shirali P. Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicol In Vitro. 2006;20(4): 519–28.PubMedGoogle Scholar
  56. 56.
    Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F, Courcot D, Aboukais A, Shirali P. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology. 2006;225(1):12–24.PubMedGoogle Scholar
  57. 57.
    Kouassi KS, Billet S, Garçon G, Verdin A, Diouf A, Cazier F, Djaman J, Courcot D, Shirali P. Oxidative damage induced in A549 cells by physically and chemically characterized air particulate matter (PM2.5) collected in Abidjan, Côte d’Ivoire. J Appl Toxicol. 2010;30(4):310–20.PubMedGoogle Scholar
  58. 58.
    Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008;26(4):339–62.PubMedGoogle Scholar
  59. 59.
    Kaetsu A, Fukushima T, Inoue S, Lim H, Moriyama M. Role of heat shock protein 60 (HSP60) on paraquat intoxication. J Appl Toxicol. 2001;21(5):425–30.PubMedGoogle Scholar
  60. 60.
    Yamada K, Fukushima T. Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Exp Toxicol Pathol. 1993;45(5–6):375–80.PubMedGoogle Scholar
  61. 61.
    Fukushima T, Yamada K, Hojo N, Isobe A, Shiwaku K, Yamane Y. Mechanism of cytotoxicity of paraquat. III. The effects of acute paraquat exposure on the electron transport system in rat mitochondria. Exp Toxicol Pathol. 1994;46(6):437–41.PubMedGoogle Scholar
  62. 62.
    Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Vinodhkumar R, Devaki T. Stabilization of pulmonary mitochondrial enzyme system by capsaicin during benzo(a)pyrene induced experimental lung cancer. Biomed Pharmacother. 2008;62(6):390–4.PubMedGoogle Scholar
  63. 63.
    Venkatraman M, Konga D, Peramaiyan R, Ganapathy E, Dhanapal S. Reduction of mitochondrial oxidative damage and improved mitochondrial efficiency by administration of crocetin against benzo[a]pyrene induced experimental animals. Biol Pharm Bull. 2008;31(9):1639–45.PubMedGoogle Scholar
  64. 64.
    Naveenkumar C, Raghunandhakumar S, Asokkumar S, Devaki T. Baicalein abrogates reactive oxygen species (ROS)-mediated mitochondrial dysfunction during experimental pulmonary carcinogenesis in vivo. Basic Clin Pharmacol Toxicol. 2013;112(4):270–81.PubMedGoogle Scholar
  65. 65.
    Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. Hesperidin attenuates mitochondrial dysfunction during benzo(a)pyrene-induced lung carcinogenesis in mice. Fundam Clin Pharmacol. 2011;25(1):91–8.PubMedGoogle Scholar
  66. 66.
    Selvendiran K, Senthilnathan P, Magesh V, Sakthisekaran D. Modulatory effect of Piperine on mitochondrial antioxidant system in Benzo(a)pyrene-induced experimental lung carcinogenesis. Phytomedicine. 2004;11(1):85–9.PubMedGoogle Scholar
  67. 67.
    Housset B. Free radicals and respiratory pathology. C R Seances Soc Biol Fil. 1994;188(4): 321–33.PubMedGoogle Scholar
  68. 68.
    Gonchar O, Mankovska I. Moderate hypoxia/hyperoxia attenuates acute hypoxia-induced oxidative damage and improves antioxidant defense in lung mitochondria. Acta Physiol Hung. 2012;99(4):436–46.PubMedGoogle Scholar
  69. 69.
    Jamieson D, Chance B, Cadenas E, Boveris A. The relation of free radical production to hyperoxia. Annu Rev Physiol. 1986;48:703–19.PubMedGoogle Scholar
  70. 70.
    Fridovich I, Freeman B. Antioxidant defenses in the lung. Annu Rev Physiol. 1986;48: 693–702.PubMedGoogle Scholar
  71. 71.
    Thanislass J, Raveendran M, Sivasithamparam N, Devaraj H. Effect of chronic glutathione deficiency on rat lung mitochondrial function. Pulm Pharmacol. 1996;9(2):119–22.PubMedGoogle Scholar
  72. 72.
    Nagata K, Iwasaki Y, Yamada T, Yuba T, Kono K, Hosogi S, Ohsugi S, Kuwahara H, Marunaka Y. Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury. Respir Med. 2007;101(4):800–7.PubMedGoogle Scholar
  73. 73.
    Gonzalvez F, Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis. 2007;12(5):877–85.PubMedGoogle Scholar
  74. 74.
    Samhan-Arias AK, Ji J, Demidova OM, Sparvero LJ, Feng W, Tyurin V, Tyurina YY, Epperly MW, Shvedova AA, Greenberger JS, Bayır H, Kagan VE, Amoscato AA. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim Biophys Acta. 2012;1818(10):2413–23.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Jiang J, Serinkan BF, Tyurina YY, Borisenko GG, Mi Z, Robbins PD, Schroit AJ, Kagan VE. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic Biol Med. 2003;35(7):814–25.PubMedGoogle Scholar
  76. 76.
    Nakagawa Y. Initiation of apoptotic signal by the peroxidation of cardiolipin of mitochondria. Ann N Y Acad Sci. 2004;1011:177–84.PubMedGoogle Scholar
  77. 77.
    Yin H, Zhu M. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res. 2012;46(8):959–74.PubMedGoogle Scholar
  78. 78.
    Tyurin VA, Tyurina YY, Jung MY, Tungekar MA, Wasserloos KJ, Bayir H, Greenberger JS, Kochanek PM, Shvedova AA, Pitt B, Kagan VE. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2863–72.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Tyurina YY, Tyurin VA, Kaynar AM, Kapralova VI, Wasserloos K, Li J, Mosher M, Wright L, Wipf P, Watkins S, Pitt BR, Kagan VE. Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Am J Physiol Lung Cell Mol Physiol. 2010;299(1):L73–85.PubMedCentralPubMedGoogle Scholar
  80. 80.
    De AK, Rajan RR, Krishnamoorthy L, Bhatt MB, Singh BB. Oxidative stress in radiation-induced interstitial pneumonitis in the rat. Int J Radiat Biol. 1995;68(4):405–9.PubMedGoogle Scholar
  81. 81.
    Ho YS, Liou HB, Lin JK, Jeng JH, Pan MH, Lin YP, Guo HR, Ho SY, Lee CC, Wang YJ. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide. Arch Toxicol. 2002;76(8):484–93.PubMedGoogle Scholar
  82. 82.
    de Bittencourt Pasquali MA, Roberto de Oliveira M, De Bastiani MA, da Rocha RF, Schnorr CE, Gasparotto J, Gelain DP, Moreira JC. L-NAME co-treatment prevent oxidative damage in the lung of adult Wistar rats treated with vitamin A supplementation. Cell Biochem Funct. 2012;30(3):256–63.PubMedGoogle Scholar
  83. 83.
    Fahn HJ, Wang LS, Kao SH, Chang SC, Huang MH, Wei YH. Smoking-associated mitochondrial DNA mutations and lipid peroxidation in human lung tissues. Am J Respir Cell Mol Biol. 1998;19(6):901–9.PubMedGoogle Scholar
  84. 84.
    Micale RT, La Maestra S, Di Pietro A, Visalli G, Baluce B, Balansky R, Steele VE, De Flora S. Oxidative stress in the lung of mice exposed to cigarette smoke either early in life or in adulthood. Arch Toxicol. 2013;87(5):915–8.PubMedGoogle Scholar
  85. 85.
    Lee HC, Lim ML, Lu CY, Liu VW, Fahn HJ, Zhang C, Nagley P, Wei YH. Concurrent increase of oxidative DNA damage and lipid peroxidation together with mitochondrial DNA mutation in human lung tissues during aging–smoking enhances oxidative stress on the aged tissues. Arch Biochem Biophys. 1999;362(2):309–16.PubMedGoogle Scholar
  86. 86.
    Konga DB, Kim Y, Hong SC, Roh YM, Lee CM, Kim KY, Lee SM. Oxidative stress and antioxidant defenses in asthmatic murine model exposed to printer emissions and environmental tobacco smoke. J Environ Pathol Toxicol Oncol. 2009;28(4):325–40.PubMedGoogle Scholar
  87. 87.
    Kosmider B, Messier EM, Chu HW, Mason RJ. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One. 2011;6(12):e26059.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Anderson EJ, Katunga LA, Willis MS. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol. 2012;39(2):179–93.PubMedGoogle Scholar
  89. 89.
    Forman HJ, Kim E. Inhibition by linoleic acid hydroperoxide of alveolar macrophage superoxide production: effects upon mitochondrial and plasma membrane potentials. Arch Biochem Biophys. 1989;274(2):443–52.PubMedGoogle Scholar
  90. 90.
    Terrasa AM, Guajardo MH, de Armas Sanabria E, Catalá A. Pulmonary surfactant protein A inhibits the lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria and microsomes. Biochim Biophys Acta. 2005;1735(2):101–10.PubMedGoogle Scholar
  91. 91.
    Bein K, Leikauf GD. Acrolein - a pulmonary hazard. Mol Nutr Food Res. 2011;55(9): 1342–60.PubMedGoogle Scholar
  92. 92.
    Moretto N, Volpi G, Pastore F, Facchinetti F. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci. 2012;1259:39–46.PubMedGoogle Scholar
  93. 93.
    Yadav UC, Ramana KV, Srivastava SK. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells. Free Radic Biol Med. 2013;65C:15–25.Google Scholar
  94. 94.
    Roy J, Pallepati P, Bettaieb A, Tanel A, Averill-Bates DA. Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chem Biol Interact. 2009;181(2):154–67.PubMedGoogle Scholar
  95. 95.
    Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Fang KM, Shu WH, Chang HC, Wang JJ, Mak OT. Study of prostaglandin receptors in mitochondria on apoptosis of human lung carcinoma cell line A549. Biochem Soc Trans. 2004;32(Pt 6):1078–80.PubMedGoogle Scholar
  97. 97.
    Liou JY, Aleksic N, Chen SF, Han TJ, Shyue SK, Wu KK. Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A2 in human cancer cells: implication in apoptosis resistance. Exp Cell Res. 2005;306(1):75–84.PubMedGoogle Scholar
  98. 98.
    Uchida K, Shibata T. 15-Deoxy-Delta(12,14)-prostaglandin J2: an electrophilic trigger of cellular responses. Chem Res Toxicol. 2008;21(1):138–44.PubMedGoogle Scholar
  99. 99.
    Wang JJ, Mak OT. Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD2 metabolite, 15d-PGJ2. Cell Biol Int. 2011;35(11):1089–96.PubMedGoogle Scholar
  100. 100.
    Shankaranarayanan P, Nigam S. IL-4 induces apoptosis in A549 lung adenocarcinoma cells: evidence for the pivotal role of 15-hydroxyeicosatetraenoic acid binding to activated peroxisome proliferator-activated receptor gamma transcription factor. J Immunol. 2003;170(2):887–94.PubMedGoogle Scholar
  101. 101.
    Repine JE, Reiss OK, Elkins N, Chughtai AR, Smith DM. Effects of fine carbonaceous particles containing high and low unpaired electron spin densities on lungs of female mice. Transl Res. 2008;152(4):185–93.PubMedGoogle Scholar
  102. 102.
    Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion. 2013;13(3):209–24.PubMedGoogle Scholar
  103. 103.
    Suntres ZE, Hepworth SR, Shek PN. Pulmonary uptake of liposome-associated alpha-tocopherol following intratracheal instillation in rats. J Pharm Pharmacol. 1993;45(6):514–20.PubMedGoogle Scholar
  104. 104.
    Suntres ZE, Hepworth SR, Shek PN. Protective effect of liposome-associated alpha-tocopherol against paraquat-induced acute lung toxicity. Biochem Pharmacol. 1992;44(9):1811–8.PubMedGoogle Scholar
  105. 105.
    Suntres ZE, Shek PN. Protective effect of liposomal alpha-tocopherol against bleomycin-induced lung injury. Biomed Environ Sci. 1997;10(1):47–59.PubMedGoogle Scholar
  106. 106.
    Mabalirajan U, Aich J, Leishangthem GD, Sharma SK, Dinda AK, Ghosh B. Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model. J Appl Physiol (1985). 2009;107(4):1285–92.Google Scholar
  107. 107.
    Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279(33):34682–90.PubMedGoogle Scholar
  108. 108.
    Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 2006;8(2): E277–83.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Rocha M, Hernandez-Mijares A, Garcia-Malpartida K, Bañuls C, Bellod L, Victor VM. Mitochondria-targeted antioxidant peptides. Curr Pharm Des. 2010;16(28):3124–31.PubMedGoogle Scholar
  110. 110.
    Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE. Targeting mitochondria. Acc Chem Res. 2008;41(1):87–97.PubMedGoogle Scholar
  111. 111.
    Kagan VE, Wipf P, Stoyanovsky D, Greenberger JS, Borisenko G, Belikova NA, Yanamala N, Samhan Arias AK, Tungekar MA, Jiang J, Tyurina YY, Ji J, Klein-Seetharaman J, Pitt BR, Shvedova AA, Bayir H. Mitochondrial targeting of electron scavenging antioxidants: regulation of selective oxidation vs random chain reactions. Adv Drug Deliv Rev. 2009;61(14):1375–85.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sainath R. Kotha
    • 1
  • Travis O. Gurney
    • 2
  • Miles U. Magalang
    • 3
  • Thomas J. Hund
    • 4
  • Abhay R. Satoskar
    • 5
  • Peter J. Mohler
    • 6
  • Krishna Rao Maddipati
    • 7
  • Viswanathan Natarajan
    • 8
  • Narasimham L. Parinandi
    • 9
    Email author
  1. 1.Department of Internal MedicineWexner Medical Center, 201 Davis Heart and Lung Research InstituteColumbusUSA
  2. 2.Division of Pulmonary, Allergy, Critical Care, and Sleep MedicineCollege of Medicine, The Ohio State University Wexner Medical CenterColumbusUSA
  3. 3.Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusUSA
  4. 4.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  5. 5.Department of Pathology and MicrobiologyWexner Medical Center, The Ohio State UniversityColumbusUSA
  6. 6.Departments of Internal Medicine and Physiology and Cell BiologyOhio State University Wexner Medical Center, College of MedicineColumbusUSA
  7. 7.Department of PathologyWayne State UniversityDetroitUSA
  8. 8.Department of Pharmacology and MedicineUniversity of Illinois at ChicagoChicagoUSA
  9. 9.Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineCollege of Medicine, Ohio State University Wexner Medical CenterColumbusUSA

Personalised recommendations