Role of Mitochondrial Reactive Oxygen and Nitrogen Species in Respiratory Diseases
- 1 Citations
- 749 Downloads
Abstract
Mitochondria are key cellular organelles that not only supply cellular ATP but also integrate redox signaling, apoptotic balance, and biosynthetic pathways in the cell. Mitochondrial dysfunction leads to loss of cellular function, and in humans, mitochondrial dysfunction causes numerous pathologies including cancer, cardiovascular disease, neurological disorders, and respiratory diseases. Mitochondria are a major source of cellular reactive oxygen species (ROS), and mitochondrial ROS production is tightly regulated by the various states of electron transport chain and antioxidant systems present within the mitochondria. As accumulation of mitochondria-derived ROS have been linked to several human diseases, a better understanding of mitochondrial ROS signaling and regulation of its production and function is clinically relevant under physiological and pathological situations. Further, as mitochondrial ROS is linked to mitochondrial dysfunction in various human pathologies, targeting mitochondrial ROS with specific antioxidants has been an area of intense investigation. Thus, there is considerable evidence for mitochondrial ROS in normal cell function and signaling, and in this review, we discuss recent advances on the generation, regulation, and targeting of mitochondrial ROS.
Keywords
Mitochondria Oxidative stress ROS RNS Respiratory diseasesReferences
- 1.Verschoor, et al. BioMed Res Int. Mitochondria and Cancer: past, present and future. 2013;2013:Article ID 612369.Google Scholar
- 2.Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998;10:248–53.PubMedGoogle Scholar
- 3.Sena LA, Chandel NS. Mol Cell. 2012;48:158–67.PubMedCentralPubMedGoogle Scholar
- 4.Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.Google Scholar
- 5.Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci. 2006;27:639–45Google Scholar
- 6.Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HH. The NOX toolbox: validating the role of NADPH oxidase in physiology and disease. Cell Mol Life Sci. 2012;69:2327–43.PubMedCentralPubMedGoogle Scholar
- 7.Damico R, Zulueta JJ, Hassoun PM. Pulmonary endothelial cell NOX. Am J Respir Cell Mol Biol. 2012;47:129–39.PubMedGoogle Scholar
- 8.Pendyala S, Natarajan V. Redox regulation of Nox proteins. Respir Physiol Neurobiol. 2010;174:265–71.PubMedCentralPubMedGoogle Scholar
- 9.Briger K, Schiavone S, Miller Jr FJ, Krause K-H. Reactive oxygen species: from health and disease. Swiss Med Wkly. 2012;142:w13659.Google Scholar
- 10.Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552: 335–44.PubMedCentralPubMedGoogle Scholar
- 11.Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009;20:332–40.PubMedGoogle Scholar
- 12.Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417: 1–13.PubMedCentralPubMedGoogle Scholar
- 13.Carnesecchi S, Pache JC, Barazzone-Argiroffo C. NOX enzymes: potential treatment for the treatment of acute lung injury. Cell Mol Life Sci. 2012;69:2373–85.PubMedGoogle Scholar
- 14.Castello PR, et al. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3:277–87.PubMedGoogle Scholar
- 15.Baker PR, Schopfer FJ, O’Donnell VB, Freeman BA. Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med. 2009;46:989–1003.PubMedCentralPubMedGoogle Scholar
- 16.Kansanen E, Jyrkkanen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med. 2012;52:973–82.PubMedGoogle Scholar
- 17.Burgoyne JR, Rudy KO, Mayr M, Eaton P. Nitrosative protein oxidation is modulated during early endotoxemia. Nitric Oxide. 2011;25:118–24.PubMedCentralPubMedGoogle Scholar
- 18.Kudin AP, et al. Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem. 2004;279:4127–35.PubMedGoogle Scholar
- 19.Lambert AJ, et al. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on pH gradient across the mitochondrial inner membrane. Biochem J. 2004;382:511–7.PubMedCentralPubMedGoogle Scholar
- 20.Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45:466–72.PubMedCentralPubMedGoogle Scholar
- 21.Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418:291–6.PubMedGoogle Scholar
- 22.Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998;273:11038–43.PubMedGoogle Scholar
- 23.Lacza Z, Snipes JA, Zhang J, Horvath EM, Figueroa JP, Szabo C, Busija DW. Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med. 2003;35:1217–28.PubMedGoogle Scholar
- 24.Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci. 2013;14:6306–44.PubMedCentralPubMedGoogle Scholar
- 25.Piantadosi CA, Sukliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med. 2012;53:2043–53.PubMedCentralPubMedGoogle Scholar
- 26.Bourens M, Fontanesi F, Soto IC, Liu J, Barrientos A. Redox and reactive oxygen species regulation of mitochondrial cytochrome c oxidase biogenesis. Antioxid Redox Signal. 2012. doi: 10.1089/ars.2012.4847.PubMedGoogle Scholar
- 27.Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutase (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. 2001;276:38388–93.PubMedGoogle Scholar
- 28.Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1996;11:376–81.Google Scholar
- 29.Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460–73.PubMedGoogle Scholar
- 30.Nicholls P. Classical catalase: ancient and modern. Arch Biochem Biophys. 2012;525: 95–101.PubMedGoogle Scholar
- 31.Ho YS, et al. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem. 2004;279:32804–12.PubMedGoogle Scholar
- 32.Flohe L, Schlegel W. Glutathione peroxidase. 1V. Intracellular distribution of the glutathione peroxidase system in rat the rat liver. Hoppe Seylers Z Physiol Chem. 1971;352:1401–10.PubMedGoogle Scholar
- 33.Singh AK, Dhaunsi GS, Gupta MP, Orak JK, Asayama K, Singh I. Demonstration of glutathione peroxidase in rat liver peroxisomes and its intraorganellar distribution. Arch Biochem Biophys. 1994;315:331–8.PubMedGoogle Scholar
- 34.Sies H, Sharov VS, Klotz LO, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem. 1997;272:27812–7.PubMedGoogle Scholar
- 35.Fu Y, Sies H, Lei XG. Opposite roles of selenium-dependent glutathione peroxidase-1 in superoxide generator doquat- and peroxynitrite-induced apoptosis and signaling. J Biol Chem. 2001;276:43004–9.PubMedGoogle Scholar
- 36.Imai H, et al. Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun. 2003;305:278–86.PubMedGoogle Scholar
- 37.Yoshida T, et al. Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation. 1997;96 Suppl 9:II-216–20.Google Scholar
- 38.Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997;15:351–69.PubMedGoogle Scholar
- 39.Miranda-Vizuette A, Damdimopoulos AE, Spyrou G. The mitochondrial thioredoxin system. Antioxid Redox Signal. 2000;2:801–10.Google Scholar
- 40.Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol. 2006;46:215–34.PubMedGoogle Scholar
- 41.Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.PubMedGoogle Scholar
- 42.Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005;38: 1543–52.PubMedGoogle Scholar
- 43.Vogel R, Wiesinger H, Hamprecht B, Dringen R. The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci Lett. 1999;275:97–100.PubMedGoogle Scholar
- 44.Tischler ME, Hecht P, Williamson JR. Effect of ammonia on mitochondrial and cytosolic NADH and NADPH systems in isolated rat-liver cells. FEBS Lett. 1977;76:99–104.PubMedGoogle Scholar
- 45.Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci U S A. 1985;82:4668–72.PubMedCentralPubMedGoogle Scholar
- 46.Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara T, et al. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 2006;113:1779–86.PubMedGoogle Scholar
- 47.Ma Q. Role of Nrf2 in oxidative stress and toxicity. Ann Rev Pharmacol Toxicol. 2013;53: 401–20.Google Scholar
- 48.Imhoff BR, Hansen JM. Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. Biochem J. 2009;424:491–500.PubMedGoogle Scholar
- 49.Kobayashi M, Yamamoto M. Molecular mechanisms activating Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 2005;7:385–94.PubMedGoogle Scholar
- 50.Hansen JM, Zhang H, Jones DP. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-α-induced reactive oxygen species generation, NF-kB activation, and apoptosis. Toxicol Sci. 2006;91:643–50.PubMedGoogle Scholar
- 51.Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.PubMedGoogle Scholar
- 52.Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–75.PubMedCentralPubMedGoogle Scholar
- 53.Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–5.PubMedGoogle Scholar
- 54.Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116: 551–63.PubMedGoogle Scholar
- 55.van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 2004;279:28873–9.PubMedGoogle Scholar
- 56.Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.PubMedGoogle Scholar
- 57.St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397–408.PubMedGoogle Scholar
- 58.Lee JH, Song MY, Song EK, Kim EK, Moon WS, Han MK, Park JW, Kwon KB, Park BH. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 2009;58:344–51.PubMedCentralPubMedGoogle Scholar
- 59.Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12:662–7.PubMedGoogle Scholar
- 60.Sack MN. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol. 2011;301:H2191–7.PubMedCentralPubMedGoogle Scholar
- 61.Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012. Article ID 936486, 14 p. doi: 10.1155/2012/936486.
- 62.Smith RAJ, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann NY Acad Sci. 2010;1201:96–103.PubMedGoogle Scholar
- 63.Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and anti-apoptotic properties. J Biol Chem. 2001;276:4588–96.PubMedGoogle Scholar
- 64.Adlam VJ, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–95.PubMedGoogle Scholar
- 65.Neuzil J, et al. Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Redox Rep. 2007;12: 148–62.PubMedGoogle Scholar
- 66.Lowes DA, Thottakam BMV, Webster NR, Murphy MP, Galley HF. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med. 2008;45:1559–65.PubMedGoogle Scholar
- 67.Lowes DA, Webster NR, Murphy MP, Galley HF. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth. 2013;110:472–80.PubMedCentralPubMedGoogle Scholar
- 68.Supinski GS, Murphy MP, Callahan LA. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1095–102.PubMedCentralPubMedGoogle Scholar
- 69.Mukhopadhyay P, Horvath B, Zsengeller Z, Zielonka J, Tanchian G, Holovac E, Kechrid M, Patel V, Stillman IE, Parikh SM, Joseph J, Kalyanaraman B, Pacher P. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med. 2012;52:497–506.PubMedCentralPubMedGoogle Scholar
- 70.Starenki D, Park J-I. Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo. J Clin Endocrinol Metab. 2013;98:1529–40.PubMedCentralPubMedGoogle Scholar
- 71.Cunniff B, Benson K, Stumpff J, Newick K, Held P, Taatjes D, Joseph J, Kalyanaraman B, Heintz NH. Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxins 3 and FOXM1 in malignant mesothelioma cells. J Cell Physiol. 2013;228:835–45.PubMedCentralPubMedGoogle Scholar
- 72.Du J, Cullen JJ, Buettner GR. Ascorbic acid; chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 2012;1826:443–57.PubMedCentralPubMedGoogle Scholar
- 73.Skulachev VP. A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc). 2007;72:1385–96.Google Scholar
- 74.Bakeeva LE, Barskov IV, Isaev NK, Kapelko VI, Kazachenko AV, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc). 2008;73:1288–99.Google Scholar
- 75.Neroev VV, Archipova MM, Bakeeva LE, Fursova A, Grigorian EN, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochemistry (Mosc). 2008;73: 1317–28.Google Scholar
- 76.Zhao K, Zhao GM, Wu D, et al. Cell permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J Biol Chem. 2008;279:34682–90.Google Scholar
- 77.Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 2006;8: E521–31.PubMedCentralPubMedGoogle Scholar
- 78.Petri S, Kiaei M, Damiano M, Hiller A, Willlie E, Manfredi G, et al. Cell-permeable peptide antagonists as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2006;98:1141–8.PubMedGoogle Scholar
- 79.Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal. 2008;10:601–19.Google Scholar
- 80.Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol. 2005;70:1796–806.PubMedGoogle Scholar
- 81.Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis. 2007;18:215–20.PubMedGoogle Scholar
- 82.Song W, Shin J, Lee J, Kim H, Oh D, Edelberg JM, et al. A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats. Coron Artery Dis. 2005;16:407–10.PubMedGoogle Scholar
- 83.Jiang J, Kurnikov I, Belikova NA, Xiao J, Zhao Q, Amoscato AA, et al. Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides. J Pharmacol Exp Ther. 2007;320:1050–60.PubMedGoogle Scholar
- 84.Wipf P, Xiao J, Jiang J, Belikova NA, Tyurin VA, Fink MP, et al. Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J Am Chem Soc. 2005;127:12460–1.PubMedGoogle Scholar
- 85.Jiang J, Belikova NA, Hoye AT, Zhao Q, Epperly MW, Greenberger JS, et al. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int J Radiat Oncol Biol Phys. 2008;70:816–25.PubMedCentralPubMedGoogle Scholar
- 86.Rajagopalan MS, Gupta K, Epperly MW, Franicola D, Zhang X, Wang H, et al. The mitochondria-targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair. In Vivo. 2009;23:717–26.PubMedCentralPubMedGoogle Scholar
- 87.Vanhorebeek I, De Vos R, Mesotten D, et al. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet. 2005;365:53–9.PubMedGoogle Scholar
- 88.White RR, Mela L, Bacalzo Jr LV, et al. Hepatic ultrastructure in endotoxemia, hemorrhage, and hypoxia: emphasis on mitochondrial changes. Surgery. 1973;73:525–34.PubMedGoogle Scholar
- 89.Connell RS, Harrison MW, Mela-Riker L, et al. Quantitative ultrastructure of skeletal and cardiac muscle hyperdynamic sepsis. Prog Clin Biol Res. 1988;264:325–32.PubMedGoogle Scholar
- 90.Welty-Wolf KE, Simonson SG, Huang YC, et al. Ultrastructural changes in skeletal muscle mitochondria in gram-negative sepsis. Shock. 1996;5:378–84.PubMedGoogle Scholar
- 91.Crouser ED, Julian MW, Blaho DV, et al. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med. 2002;30:276–84.PubMedGoogle Scholar
- 92.Harrois A, Huet O, Duranteau J. Alterations of mitochondrial function in sepsis and critical illness. Curr Opin Anaesthesiol. 2009;22:143–9.PubMedGoogle Scholar
- 93.Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.PubMedGoogle Scholar
- 94.Rowlands DJ, et al. Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determine the severity of inflammation in mouse lung microvessels. J Clin Invest. 2011;121:1986–99.PubMedCentralPubMedGoogle Scholar
- 95.Dada LA, Sznajder JI. Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α mediated inflammatory responses. J Clin Invest. 2011;121:1683–5.PubMedCentralPubMedGoogle Scholar
- 96.Weiss DJ, Kolls JK, Oritz LA, Panoskaltsis-Mortari A, Prockop DJ. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 2008;5:637–67.PubMedCentralPubMedGoogle Scholar
- 97.Matthay MA, Goolaerts A, Howard JP, Lee JW. Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med. 2010;38:S569–73.PubMedCentralPubMedGoogle Scholar
- 98.Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18:759–65.PubMedCentralPubMedGoogle Scholar
- 99.Wood LG, Gibson PG, Garg ML. Biomarkers of lipid peroxidation, airway inflammation, and asthma. Eur Respir J. 2003;21:177–86.PubMedGoogle Scholar
- 100.Heinzmann A, Thoma C, Dietrich H, Deichmann KA. Identification of common polymorphisms in the mitochondrial genome. Allergy. 2003;58:830–1.PubMedGoogle Scholar
- 101.Raby BA, Klanderman B, Murphy A, Mazza S, Camargo Jr CA, Silverman EK, Weiss ST. A common mitochondrial haplogroup is associated with elevated total serum IgE levels. J Allergy Clin Immunol. 2007;120:351–8.PubMedGoogle Scholar
- 102.Zifa E, Daniil Z, Skoumi E, Stavrou M, Papadimitriou K, Terzenidou M, Kostikas K, Bagiatis V, Gourgoulianis KI, Mamuris Z. Mitochondrial genetic background plays a role in increasing risk to asthma. Mol Biol Rep. 2012;39:4697–708.PubMedGoogle Scholar
- 103.Servais S, Boussouar A, Molnar A, Douki T, Pequignot JM, Favier R. Age-related sensitivity to lung oxidative stress during ozone exposure. Free Radic Res. 2005;39:305–16.PubMedGoogle Scholar
- 104.Fahn HJ, Wang LS, Kao SH, Chang SC, Huang MH, Wei YH. Smoking –associated mitochondrial DNA mutations and lipid peroxidation in human lung tissues. Am J Respir Cell Mol Biol. 1998;19:901–19.PubMedGoogle Scholar
- 105.Reddy PH. Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics. Pharmaceuticals (Basel). 2011;25:429–56.Google Scholar
- 106.Comhair SA, Ricci KS, Arroliga M, Lara AR, Dweik RA, Song W, Hazen SL, Bleecker ER, Busse WW, Chung KF, et al. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med. 2005;172:306–13.PubMedCentralPubMedGoogle Scholar
- 107.De Raeve HR, Thunnissen FB, Kaneko FT, Guo FH, Lewis M, Kavuru MS, Secic M, Thomassen MJ, Erzurum SC. Decreased Cu, Zn-SOD activity in asthmatic airway epithelium: correction by inhaled corticosteroid in vivo. Am J Physiol. 1997;272:L148–54.PubMedGoogle Scholar
- 108.Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B. Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol. 2008;181:3540–8.PubMedGoogle Scholar
- 109.Hayashi T, Ishii A, Nakai S, Hasgawa K. Ultrastructure of goblet-cell metaplasia from Clara cell in the allergic asthmatic airway inflammation in a mouse model of asthma in vivo. Virchows Arch. 2004;444:66–73.PubMedGoogle Scholar
- 110.Konradova V, Copova C, Sukova B, Houstek J. Ultrastructure of the bronchial epithelium in three children with asthma. Pediatr Pulmonol. 1985;1:182–7.PubMedGoogle Scholar
- 111.Simoes DC, Psarra A-M G, Mauad T, Pantou I, Roussos C, Sekeris CE, Gratziou C. Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma. PLoS One. 2012;7:e39183.PubMedCentralPubMedGoogle Scholar
- 112.Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, et al. Redox control of cell death. Antioxid Redox Signal. 2002;4:405–14.PubMedGoogle Scholar
- 113.Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med. 2006;203:189–201.PubMedCentralPubMedGoogle Scholar
- 114.Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci U S A. 2009;106:3543–8.PubMedCentralPubMedGoogle Scholar
- 115.Catley MC, Birrell MA, Hardaker EL, de Alba J, Farrow S, et al. Estrogen receptor beta: expression profile and possible anti-inflammatory role in disease. J Pharmacol Exp Ther. 2008;326:83–8.PubMedGoogle Scholar
- 116.Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I. Mitochondrial dysfunction increases allergic airway inflammation. J Immunol. 2009;183:5379–87.PubMedCentralPubMedGoogle Scholar
- 117.Montezano AC, Touyz RM. Molecular mechanisms of hypertension – reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol. 2012;28:288–95.PubMedGoogle Scholar
- 118.Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med. 2012;52:1970–86.PubMedGoogle Scholar
- 119.Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JGN, Weir EK. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294:H570–8.PubMedGoogle Scholar
- 120.McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Linder JR, Mathier MA, Mcgoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, Harrington RA, Anderson JL, Bates ER, Bridges CR, Eisenberg MJ, Ferrari VA, Grines CL, Hlatky MA, Jacobs AK, Kaul S, Lichtenberg RC, Moliterno DJ, Mukherjee D, Pohost GM, Schofield RS, Shubrooks SJ, Stein JH, Tracy CM, Weitz HH, Wesley DJ. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119: 2250–94.PubMedGoogle Scholar
- 121.Michelakis ED, Wilkins MR, Rabinovitch M. Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation. 2008;118:1486–95.PubMedGoogle Scholar
- 122.Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, McMurtry MS, Michalak M, Vance JE, Sessa WC, Michelakis ED. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med. 2011;3(88):88ra55.PubMedCentralPubMedGoogle Scholar
- 123.Wolin MS, Ahmad M, Gupte SA. The source of oxidative stress in the vessel wall. Kidney Int. 2005;67:1659–61.PubMedGoogle Scholar
- 124.Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation. 2010;121:2661–71.PubMedCentralPubMedGoogle Scholar
- 125.Sharma S, Sud N, Wiseman DA, Carter AL, Kumar S, Hou Y, Rau T, Wilham J, Harmon C, Oishi P, Fineman JR, Black SM. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2008;294:L46–56.PubMedCentralPubMedGoogle Scholar
- 126.Xue C, Johns RA. Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995;333:1642–4.PubMedGoogle Scholar
- 127.Hu W, Jin R, Zhang J, You T, Peng Z, Ge X, Bronson RT, Halperin JA, Loscalzo J, Qin X. The critical roles of platelets activation and reduced NO bioavailability in fatal pulmonary arterial hypertension in a murine hemolysis model. Blood. 2010;116:1613–22.PubMedCentralPubMedGoogle Scholar
- 128.Selman M, King TE, Pardo A, American Thoracic Society, European Respiratory Society, American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134:136–51.PubMedGoogle Scholar
- 129.Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208:1339–50.PubMedCentralPubMedGoogle Scholar
- 130.He X, Young S-H, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kB signaling and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol. 2011;24:2237–48.PubMedGoogle Scholar
- 131.Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest. 2012;122:2756–62.PubMedCentralPubMedGoogle Scholar
- 132.Cheresh P, Kim S-J, Tulsiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta. 2013;1832:1028–40.Google Scholar
- 133.Tatler AL, Jenkins G. Proc Am Thorac Soc. 2012;9:130–6. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.Google Scholar
- 134.Sakai N, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta. 2013;1832:911–21.PubMedCentralPubMedGoogle Scholar
- 135.Cheresh P, Kim S-J, Tulsiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta. 2013;1832:1028–40.PubMedCentralPubMedGoogle Scholar
- 136.Crestani B, Besnard J, Boczkowski J. Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2011;43:1086–9.PubMedGoogle Scholar
- 137.Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15:1077–81.PubMedCentralPubMedGoogle Scholar
- 138.Osborn-Heaford HL, Ryan AJ, Murthy S, Racila AM, He C, Sieren JC, Spitz DR, Carter AB. Mitochondrial Rac1 import and electron transfer from cytochrome c is required for pulmonary fibrosis. J Biol Chem. 2012;287:3301–12.PubMedCentralPubMedGoogle Scholar
- 139.He C, Murthy S, McCormick ML, Spitz DR, Ryan AJ, Carter AB. Mitochondrial Cu, Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation. J Biol Chem. 2011;286:15597–607.PubMedCentralPubMedGoogle Scholar
- 140.Murthy S, Adamcakova-Dodd A, Perry SS, Tephly LA, Keller RM, Metwali N, Meyerholz DK, Wang Y, Glogauer M, Thorne PS, Carter AB. Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2009;297:L846–55.PubMedCentralPubMedGoogle Scholar
- 141.Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2012;302:L721–9.PubMedCentralPubMedGoogle Scholar
- 142.de Brito OM, Scorrano L. An intimate liaison: spatial organization of the endoplasmic reticulum mitochondria relationship. EMBO J. 2008;29:2715–23.Google Scholar
- 143.Liu RM, Gaston KA, Pravia XX. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010;48:1–15.PubMedCentralPubMedGoogle Scholar
- 144.Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, Feghali-Bostwick C, Mutlu GM, Budinger GRS, Chandel NS. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013;288:770–7.PubMedCentralPubMedGoogle Scholar
- 145.Baraldi E, Filippone M. Chronic lung disease after birth. N Engl J Med 2007;357:1946–55.Google Scholar
- 146.Ratner V, Starkov A, Matsiukevich D, Polin RA, Ten VS. Mitochondrial dysfunction contributes to alveolar development arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol. 2009;40:511–8.PubMedCentralPubMedGoogle Scholar
- 147.Northway Jr WH, Rosan RC. Radiographic features of pulmonary oxygen toxicity in the newborn: bronchopulmonary dysplasia. Radiology. 1968;91:49–58.PubMedGoogle Scholar
- 148.Saugstad OD. Bronchopulmonary dysplasia and oxidative stress: are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr. 1997;86:1277–82.PubMedGoogle Scholar
- 149.Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T. Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun. 1995;209:723–9.PubMedGoogle Scholar
- 150.Li J, Gao X, Qian M, Eaton JW. Mitochondrial metabolism underlies hyperoxic cell damage. Free Radic Biol Med. 2004;36:1460–70.PubMedGoogle Scholar
- 151.Budinger GRS, Mutlu GM, Urich D, Soberanes S, Buccellato LJ, Hawkins K, Chiarella SE, Radigan KA, Eisenbart J, Agrawal H, Berkelhamer S, Hekimi S, Zhang J, Periman H, Schumacker PT, Jain M, Chandel NS. Am J Respir Crit Care Med. 2011;183:1043–54.PubMedCentralPubMedGoogle Scholar
- 152.Budinger GRS, Tso M, McClintock, Dean DA, Sznajder JI, Chandel NS. Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. J Biol Chem. 2002;277:15654–60.PubMedGoogle Scholar
- 153.Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34:453–63.PubMedGoogle Scholar
- 154.Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A, Cardounel AJ, Zweier JL, Garcia JGN, Natarajan V. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;284:L26–38.PubMedGoogle Scholar
- 155.Asikainen TM, White CW. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD? Toxicol Appl Pharmacol. 2005;203:177–88.Google Scholar
- 156.Yee M, Vitiello PF, Roper JM, Staversky RJ, Wright TW, McGrath-Morrow SA, et al. Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1101–11.PubMedGoogle Scholar
- 157.Warner BB, Stuart LA, Papes RA, Wispe JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998;275:L110–7.PubMedGoogle Scholar
- 158.Frank L. Effects of oxygen on the newborn. Fed Proc. 1985;44:2328–34.PubMedGoogle Scholar
- 159.Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med. 2013;61:51–60.Google Scholar
- 160.Usatyuk PV, Gorshkova IA, He D, Zhao Y, Kalari SK, Garcia JG, Natarajan V. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells. J Biol Chem. 2009;284:15339–52.PubMedCentralPubMedGoogle Scholar
- 161.Zhang X, Shan P, Sasidhar M, Chupp GL, Flavell RA, Choi AM, Lee PJ. Reactive oxygen species and extracellular signal regulated kinase 1/2 mitogen activated protein kinase mediate hyperoxia-induced cell death in lung endothelium. Am J Respir Cell Mol Biol. 2003;28:305–15.PubMedGoogle Scholar
- 162.Troung SV, Monick MM, Yarovinsky TO, Powers LS, Nyunoya T, Hunnighake GW. Extracellular signal-regulated kinase activation delays hyperoxia-induced epithelial cell death in conditions of Akt downregulation. Am J Respir Cell Mol Biol. 2004;31:611–8.Google Scholar
- 163.Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases and cytoskeletal proteins. Antioxid Redox Signal. 2009;11:841–60.PubMedCentralPubMedGoogle Scholar
- 164.Singleton PA, Pendyala S, Gorshkova IA, Mambetsariev N, Moitra J, Garcia JG, Natarajan V. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium. J Biol Chem. 2009;284:34964–75.PubMedCentralPubMedGoogle Scholar
- 165.Harijith A, Pendyala S, Reddy NM, Bai T, Usatyuk PV, Berdyshev EV, Gorshkova I, Huang LS, Mohan V, Garzon S, Kanteti P, Reddy SP, Raj U, Natarajan V. Sphingosine Kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins. Am J Pathol. 2013;183:1169–82.Google Scholar
- 166.Chen Y, Chang L, Li W, Rong Z, Liu W, Shan R, Pan R. Thioredoxin protects fetal type II epithelial cells from hyperoxia-induced injury. Pediatr Pulmonol. 2010;45:1192–200.PubMedGoogle Scholar
- 167.Conley KE, Jubrias SA, Amara CE, Marcinek DJ. Mitochondrial dysfunction; impact on exercise performance and cellular aging. Exerc Sport Sci Rev. 2007;35:43–9.PubMedGoogle Scholar
- 168.Schiff M, Benit P, Coulibaly A, Loublier S, El-Khoury R, Rustin P. Mitochondrial response to controlled nutrition in health and disease. Nutr Rev. 2011;69:65–75.PubMedGoogle Scholar
- 169.Cerqueira FM, Laurindo FR, Kowaltowski AJ. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt, and mitochondrial biogenesis. PLoS One. 2011;6:e18433.PubMedCentralPubMedGoogle Scholar