Skip to main content

Ghrelin Receptor Antagonism as a Potential Therapeutic Target for Alcohol Use Disorders: A Preclinical Perspective

  • Chapter
  • First Online:
Book cover Central Functions of the Ghrelin Receptor

Part of the book series: The Receptors ((REC,volume 25))

  • 785 Accesses

Abstract

The rewarding properties of natural and chemical reinforcers are mediated via the reward systems, such as the cholinergic-dopaminergic reward link. A dysfunction in these reward systems underlies development of addictive behaviours such as alcohol use disorder. By elucidating the complex neurobiological mechanisms involved in the drug-induced activation of the mesolimbic dopamine system, novel treatment strategies can be identified. Recent work has suggested that the gut–brain peptide ghrelin may be such candidates. Indeed, the orexigenic peptide ghrelin activates the cholinergic-dopaminergic reward link. Ghrelin may thereby increase the incentive salience for motivated behaviours such as reward seeking. Moreover, preclinical findings show that ghrelin signalling is required for reward induced by alcohol, for the motivation to consume alcohol and for the intake of alcohol in rodents. Reward induced by other additive drugs such as nicotine, cocaine and amphetamine also involve ghrelin and its receptor. Human genetic data support a role for ghrelin in drug reward. Polymorphisms in ghrelin-related genes are associated with increased alcohol intake, smoking as well as amphetamine dependence in humans. Furthermore, plasma levels of ghrelin are associated with alcohol dependence as well as with craving. Finally, another gut–brain peptide known to regulate food intake, i.e., the anorectic peptide glucagone-like-peptide-1 (GLP-1), was recently shown to regulate drug reinforcement. Peripheral treatment with a GLP-1 analogue attenuated alcohol-induced reward as well as decreased alcohol intake and alcohol seeking behaviour in rodents. In addition, GLP-1 analogues appear to attenuate drug-induced reward. Collectively, these data suggest that ghrelin and GLP-1 receptors may be novel targets for development of pharmacological treatments of addictive behaviours such as alcohol dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschop MH, Gao XB, Horvath TL (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116:3229–3239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abizaid A, Mineur YS, Roth RH, Elsworth JD, Sleeman MW, Picciotto MR, Horvath TL (2011) Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 192:500–506

    Article  CAS  PubMed  Google Scholar 

  • Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, Gastfriend DR, Hosking JD, Johnson BA, Locastro JS, Longabaugh R, Mason BJ, Mattson ME, Miller WR, Pettinati HM, Randall CL, Swift R, Weiss RD, Williams LD, Zweben A (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. JAMA 295:2003–2017

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Tschop M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302:822–827

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  CAS  PubMed  Google Scholar 

  • Blednov YA, Walker D, Harris RA (2004) Blockade of the leptin-sensitive pathway markedly reduces alcohol consumption in mice. Alcohol Clin Exp Res 28:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin a in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601

    Article  CAS  PubMed  Google Scholar 

  • Carroll ME, France CP, Meisch RA (1979) Food-Deprivation Increases Oral and Intravenous Drug Intake in Rats. Science 205:319–321

    Article  CAS  PubMed  Google Scholar 

  • Clifford pS, Rodriguez J, Schul D, Hughes S, Kniffin T, Hart N, Eitan S, Brunel L, Fehrentz JA, Aartinez J, Wellman PJ (2012) Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict Biol 17:956–963

    Google Scholar 

  • Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC (1992) Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci 106:181–191

    Article  CAS  PubMed  Google Scholar 

  • Davis C, Woodside DB (2002) Sensitivity to the rewarding effects of food and exercise in the eating disorders. Compr Psychiatry 43:189–194

    Article  PubMed  Google Scholar 

  • Davis JF, Schurdak JD, Magrisso IJ, Mul JD, Grayson BE, Pfluger PT, Tschoep MH, Seeley RJ, Benoit SC (2012) Gastric bypass surgery attenuates ethanol consumption in ethanol-preferring rats. Biol Psychiatry 72:354–360

    Article  CAS  PubMed  Google Scholar 

  • Davis KW, Wellman PJ, Clifford PS (2007) Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul Pept 140:148–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson SL, Hrabovszky E, Hansson C, Jerlhag E, Alvarez-Crespo M, Skibicka KP, Molnar CS, Liposits Z, Engel JA, Egecioglu E (2010) Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. Neuroscience 171:1180–1186

    Article  CAS  PubMed  Google Scholar 

  • Duaso M, Duncan D (2012) Health impact of smoking and smoking cessation strategies: current evidence. Br J Community Nurs 17:356–363

    PubMed  Google Scholar 

  • Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Jerlhag E, Engel JA, Dickson SL (2011) Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord 12:141–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egecioglu E, Steensland P, Fredriksson I, Feltmann K, Engel JA, Jerlhag E (2012) The glucagon-like peptide 1 analogue exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.11.009

    PubMed  Google Scholar 

  • Egecioglu E, Engel JA, Jerlhag E (2013) The glucagon-like peptide 1 analogue exendin-4 attenuates the rewarding properties of psychostimulant drugs in mice. Plos One. doi:10.1371/journal.pone.0069010

    Google Scholar 

  • Engel JA, Fahlke C, Hulthe P, Hard E, Johannessen K, Snape B, Svensson L (1988) Biochemical and behavioral evidence for an interaction between ethanol and calcium-channel antagonists. Alcohol Alcohol 23:A13–A13

    Google Scholar 

  • Erreger K, Davis AR, Poe AM, Greig NH, Stanwood GD, Galli A (2012) Exendin-4 decreases amphetamine-induced locomotor activity. Physiol Behav 106:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham dL, Erreger K, Galli A, Stanwood GD (2013) GLP-1 analog attenuates cocaine reward. Mol Psychiatry 18:961–962

    Google Scholar 

  • Gualillo O, Caminos JE, Nogueiras R, Seoane LM, Arvat E, Ghigo E, Casanueva FF, Dieguez C (2002) Effect of food restriction on ghrelin in normal-cycling female rats and in pregnancy. Obes Res 10:682–687

    Article  CAS  PubMed  Google Scholar 

  • Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJS, Smith RG, Vanderploeg LHT, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol Brain Res 48:23–29

    Article  CAS  PubMed  Google Scholar 

  • Holden C (2001) Compulsive behaviors: behavioral addictions: do they exist? Science 294:980–982

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E (2008) Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol 13:358–363

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA (2006) Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 11:45–54

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA (2007) Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 12:6–16

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Engel JA (2010) Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology 211:415–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Engel JA (2011a) Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict Biol 16:82–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Svensson L, Engel JA (2008) Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens. Eur Neuropsychopharmacolology 18:508–518

    Article  CAS  Google Scholar 

  • Jerlhag E, Egecioglu E, Landgren S, Salome N, Heilig M, Moechars D, Datta R, Perrissoud D, Dickson SL, Engel JA (2009) Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci USA 106:11318–11323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jerlhag E, Engel JA (2011) Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend 117:126–131

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E, Janson A-C, Waters S, Engel JA (2012) Concomitant release of ventral tegmental acetylcholine and acumbal dopamine release by ghrelin in rats. Plos One. http://dx.plos.org/10.1371/journal.pone.0049557

  • Jerlhag E, Landgren S, Egecioglu E, Dickson SL, Engel JA (2011b) The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol 45:341–347

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Ryabinin AE (2010) Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotor urocortin-containing neurons. Alcohol Clin Exp Res 34:1525–1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  CAS  PubMed  Google Scholar 

  • Kulkosky PJ (1984) Effect of cholecystokinin octapeptide on ethanol intake in the rat. Alcohol 1:125–128

    Article  CAS  PubMed  Google Scholar 

  • Lanca AJ, Adamson KL, Coen KM, Chow BLC, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: A correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    Article  CAS  PubMed  Google Scholar 

  • Landgren S, Engel JA, Andersson ME, Gonzalez-Quintela A, Campos J, Nilsson S, Zetterberg H, Blennow K, Jerlhag E (2009) Association of nAChR gene haplotypes with heavy alcohol use and body mass. Brain Res 1305(Suppl):S72–S79

    Article  CAS  PubMed  Google Scholar 

  • Landgren S, Engel JA, Hyytia P, Zetterberg H, Blennow K, Jerlhag E (2011a) Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference. Behav Brain Res 221:182–188

    Article  CAS  PubMed  Google Scholar 

  • Landgren S, Simms JA, Hyytia P, Engel JA, Bartlett SE, Jerlhag E (2012) Ghrelin receptor (GHS-R1A) antagonism suppresses both operant alcohol self-administration and high alcohol consumption in rats. Addict Biol 17:86–94

    Article  CAS  PubMed  Google Scholar 

  • Landgren S, Simms JA, Thelle DS, Strandhagen E, Bartlett SE, Engel JA, Jerlhag E (2011b) The ghrelin signalling system is involved in the consumption of sweets. PLoS ONE 6:e18170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson A, Edstrom L, Svensson L, Soderpalm B, Engel JA (2005) Voluntary ethanol intake increases extracellular acetylcholine levels in the ventral tegmental area in the rat. Alcohol Alcohol 40:349–358

    Article  CAS  PubMed  Google Scholar 

  • Larsson A, Engel JA (2004) Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev 27:713–720

    Article  CAS  PubMed  Google Scholar 

  • Larsson A, Jerlhag E, Svensson L, Soderpalm B, Engel JA (2004) Is an alpha-conotoxin MII-sensitive mechanism involved in the neurochemical, stimulatory, and rewarding effects of ethanol? Alcohol 34:239–250

    Article  CAS  PubMed  Google Scholar 

  • Lewis MJ, Johnson DF, Waldman D, Leibowitz SF, Hoebel BG (2004) Galanin microinjection in the third ventricle increases voluntary ethanol intake. Alcohol Clin Exp Res 28:1822–1828

    Article  CAS  PubMed  Google Scholar 

  • Lof E, Olausson P, Debejczy A, Stomberg R, McIntosh JM, Taylor JR, Soderpalm B (2007) Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues. Psychopharmacology 195:333–343

    Article  PubMed  Google Scholar 

  • Lyons AM, Lowery EG, Sparta DR, Thiele TE (2008) Effects of food availability and administration of orexigenic and anorectic agents on elevated ethanol drinking associated with drinking in the dark procedures. Alcohol Clin Exp Res 32:1962–1968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7:400–409

    Article  CAS  PubMed  Google Scholar 

  • McKee SA, Harrison EL, O’Malley SS, Krishnan-Sarin S, Shi J, Tetrault JM, Picciotto MR, Petrakis IL, Estevez N, Balchunas E (2009) Varenicline reduces alcohol self-administration in heavy-drinking smokers. Biol Psychiatry 66:185–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell JM, Teague CH, Kayser AS, Bartlett SE, Fields HL (2012) Varenicline decreases alcohol consumption in heavy-drinking smokers. Psychopharmacology 223:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morganstern I, Barson JR, Leibowitz SF (2011) Regulation of drug and palatable food overconsumption by similar peptide systems. Curr Drug Abuse Rev 4:163–173

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer NM, Henehan RM, Hales CA, Picciotto MR (2011) Mice lacking the galanin gene show decreased sensitivity to nicotine conditioned place preference. Pharmacol Biochem Behav 98:87–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Opland DM, Leinninger GM, Myers MG, Jr (2010) Modulation of the mesolimbic dopamine system by leptin. Brain Res, 1350:65–70

    Google Scholar 

  • Potenza MN, Steinberg MA, Skudlarski P, Fulbright RK, Lacadie CM, Wilber MK, Rounsaville BJ, Gore MC, Wexler BE (2003) Gambling urges in pathological gambling—a functional magnetic resonance imaging study. Arch Gen Psychiatry 60:828–836

    Article  PubMed  Google Scholar 

  • Quarta D, di Francesco C, Melotto S, Mangiarini L, Heidbreder C, Hedou G (2009) Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem Int 54:89–94

    Article  CAS  PubMed  Google Scholar 

  • Rada P, Avena NM, Leibowitz SF, Hoebel BG (2004) Ethanol intake is increased by injection of galanin in the paraventricular nucleus and reduced by a galanin antagonist. Alcohol 33:91–97

    Article  CAS  PubMed  Google Scholar 

  • Rada PV, Mark GP, Yeomans JJ, Hoebel BG (2000) Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating, and drinking. Pharmacol Biochem Behav 65:375–379

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen K, Czachura JF, Kallman MJ, Helton DR (1996) The CCK-B antagonist LY288513 blocks the effects of nicotine withdrawal on auditory startle. Neuro Rep 7:1050–1052

    CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving—an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Salome N, Hansson C, Taube M, Gustafsson-Ericson L, Egecioglu E, Karlsson-Lindahl L, Fehrentz JA, Martinez J, Perrissoud D, Dickson SL (2009) On the central mechanism underlying ghrelin’s chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor antagonist. J Neuroendocrinol 21:777–785

    Article  CAS  PubMed  Google Scholar 

  • Schneider ER, Darby R, Leibowitz SF, Hoebel BG (2007) Orexin, but not ghrelin, injected in the lateral hypothalamus increases alcohol intake in alcohol-drinking rats. Alcohol Clin Exp Res 31:199A–199A

    Article  Google Scholar 

  • Soderpalm B, Lof E, Ericson M (2009) Mechanistic studies of ethanol’s interaction with the mesolimbic dopamine reward system. Pharmacopsychiatry 42(Suppl 1):S87–S94

    Article  PubMed  Google Scholar 

  • Suchankova P, Steensland P, Fredriksson I, Engel JA, Jerlhag E (2013) Ghrelin receptor (GHS-R1A) antagonism suppresses both alcohol consumption and the alcohol deprivation effect in rats following long-term voluntary alcohol consumption. Plos One, In press

    Google Scholar 

  • Steensland P, Simms JA, Holgate J, Richards JK, Bartlett SE (2007) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. Proc Natl Acad Sci U S A 104:12518–12523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tessari M, Catalano A, Pellitteri M, di Francesco C, Marini F, Gerrard PA, Heidbreder CA, Melotto S (2007) Correlation between serum ghrelin levels and cocaine-seeking behaviour triggered by cocaine-associated conditioned stimuli in rats. Addict Biol 12:22–29

    Article  CAS  PubMed  Google Scholar 

  • Thiele TE, Navarro M, Sparta DR, Fee JR, Knapp DJ, Cubero I (2003) Alcoholism and obesity: overlapping neuropeptide pathways? Neuropeptides 37:321–337

    Article  CAS  PubMed  Google Scholar 

  • Thiele TE, Stewart RB, Badia-Elder NE, Geary N, Massi M, Leibowitz SF, Hoebel BG, Egli M (2004) Overlapping peptide control of alcohol self-administration and feeding. Alcohol Clin Exp Res 28:288–294

    Article  CAS  PubMed  Google Scholar 

  • Tupala E, Tiihonen J (2004) Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 28:1221–1247

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ (2003a) The addicted human brain: insights from imaging studies. J Clin Inv 111:1444–1451

    Article  CAS  Google Scholar 

  • Volkow ND, Li TK (2004) Drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci 5:963–970

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Maynard L, Jayne M, Fowler JS, Zhu W, Logan J, Gatley SJ, Ding YS, Wong C, Pappas N (2003b) Brain dopamine is associated with eating behaviors in humans. Int J Eat Disord 33:136–142

    Article  PubMed  Google Scholar 

  • von der Goltz C, Koopmann A, Dinter C, Richter A, Rockenbach C, Grosshans M, Nakovics H, Wiedemann K, Mann K, Winterer G, Kiefer F (2010) Orexin and leptin are associated with nicotine craving: a link between smoking, appetite and reward. Psychoneuroendocrinology 35:570–577

    Article  PubMed  Google Scholar 

  • Wellman PJ, Clifford PS, Rodriguez J, Hughes S, Eitan S, Brunel L, Fehrentz JA, Martinez J (2011) Pharmacologic antagonism of ghrelin receptors attenuates development of nicotine induced locomotor sensitization in rats. Regul Pept 172:77–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wellman PJ, Clifford PS, Rodriguez JA, Hughes S, DI Francesco C, Melotto S, Tessari M, Corsi M, Bifone A, Gozzi A (2012) Brain reinforcement system function is ghrelin dependent: studies in the rat using pharmacological fMRI and intracranial self-stimulation. Addict Biol 17:908–919

    Google Scholar 

  • Wellman PJ, Davis KW, Nation JR (2005) Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul Pept 125:151–154

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR (2001a) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992–5995

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR (2001b) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50:2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DGA, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328

    Article  CAS  PubMed  Google Scholar 

  • Yeomans JS, Mathur A, Tampakeras M (1993) Rewarding brain-stimulation—Role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci 107:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The book chapter was supported by grants from the Swedish Research Council (grant no. K2006-21X-04247-33-3, 2009-2782 and K2010-80X-21496-01-6), The Swedish brain foundation, LUA/ALF (grant no. 148251) from the Sahlgrenska University Hospital, Alcohol research council of the Swedish alcohol retailing monopoly and the foundations of Adlerbertska, Fredrik and Ingrid Thuring, Tore Nilsson, Längmanska, Torsten and Ragnar Söderberg, Wilhelm and Martina Lundgren, NovoNordisk, Knut and Alice Wallenberg, Magnus Bergvall, Anérs, Jeansons, Åke Wiberg, the Swedish Society of Medicine, Swedish Society for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Jerlhag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jerlhag, E., Engel, J.A. (2014). Ghrelin Receptor Antagonism as a Potential Therapeutic Target for Alcohol Use Disorders: A Preclinical Perspective. In: Portelli, J., Smolders, I. (eds) Central Functions of the Ghrelin Receptor. The Receptors, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0823-3_7

Download citation

Publish with us

Policies and ethics