Skip to main content

Constitutive Activity of the Ghrelin Receptor

  • Chapter
  • First Online:
Central Functions of the Ghrelin Receptor

Part of the book series: The Receptors ((REC,volume 25))

  • 833 Accesses

Abstract

Cloning and characterization of the ghrelin receptor as a 7-transmembrane (7TM), G-protein-coupled receptor (GPCR) was first reported by Howard and his co-workers (1996). The ghrelin receptor was initially described as a growth hormone secretagogue receptor since (GHSR) this was the most well-established physiological function at that time. The natural endogenous agonist remained unknown until Kojima and his co-workers discovered (1999) the peptide hormone ghrelin. Afterward, the activity of ghrelin receptors was linked primarily with the regulation of appetite, adiposity, and energy expenditure as well as inducing of growth hormone secretion (Davenport et al. 2005; Kojima et al. 2001). Another important milestone in the pharmacological characterization of the ghrelin receptor was the discovery of its constitutive activity (Holst et al. 2003, 2004). This chapter will focus on the molecular basis of this phenomenon and its relevance in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abizaid A, Liu ZW, Andrews ZB et al (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116(12):3229–3239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adan RA (2006) Constitutive receptor activity series: endogenous inverse agonists and constitutive receptor activity in the melanocortin system. Trends Pharmacol Sci 27(4):183–186

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Gershengorn MC (1998) Constitutively signaling G-protein-coupled receptors and human disease. Trends Endocrinol Metab 9(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Bakker RA, Jongejan A, Sansuk K et al (2008) Constitutively active mutants of the histamine H1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors. Mol Pharmacol 73(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Berson EL (1993) Retinitis pigmentosa. The friedenwald lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    CAS  PubMed  Google Scholar 

  • Case R, Sharp E, Benned-Jensen T et al (2008) Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol 82(4):1884–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chow KB, Leung PK, Cheng CH et al (2008) The constitutive activity of ghrelin receptors is decreased by co-expression with vasoactive prostanoid receptors when over-expressed in human embryonic kidney 293 cells. Int J Biochem Cell Biol 40(11):2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Corvilain B, Van SJ, Dumont JE et al (2001) Somatic and germline mutations of the TSH receptor and thyroid diseases. Clin Endocrinol (Oxf) 55(2):143–158

    CAS  Google Scholar 

  • Costa T, Cotecchia S (2005) Historical review: negative efficacy and the constitutive activity of G-protein-coupled receptors. Trends Pharmacol Sci 26(12):618–624

    Article  CAS  PubMed  Google Scholar 

  • Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84(2):132–141

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Bonner TI, Foord SM et al (2005) International union of pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev 57(4):541–546

    Article  CAS  PubMed  Google Scholar 

  • De LA, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255(15):7108–7117

    Google Scholar 

  • Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda) 25(5):293–303

    Article  CAS  Google Scholar 

  • Diano S, Farr SA, Benoit SC et al (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9(3):381–388

    Article  CAS  PubMed  Google Scholar 

  • Elling CE, Frimurer TM, Gerlach LO et al (2006) Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation. J Biol Chem 281(25):17337–17346

    Article  CAS  PubMed  Google Scholar 

  • Gether U, Ballesteros JA, Seifert R et al (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272(5):2587–2590

    Article  CAS  PubMed  Google Scholar 

  • Gjesing AP, Larsen LH, Torekov SS et al (2010) Family and population-based studies of variation within the ghrelin receptor locus in relation to measures of obesity. PLoS One 5(4):e10084

    Google Scholar 

  • Hansen BS, Raun K, Nielsen KK et al (1999) Pharmacological characterisation of a new oral GH secretagogue, NN703. Eur J Endocrinol 141(2):180–189

    Article  CAS  PubMed  Google Scholar 

  • Holliday ND, Holst B, Rodionova EA et al (2007) Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor. Mol Endocrinol 21(12):3100–3112

    Article  CAS  PubMed  Google Scholar 

  • Holst B, Cygankiewicz A, Jensen TH et al (2003) High constitutive signaling of the ghrelin receptor–identification of a potent inverse agonist. Mol Endocrinol 17(11):2201–2210

    Article  CAS  PubMed  Google Scholar 

  • Holst B, Holliday ND, Bach A et al (2004) Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 279(51):53806–53817

    Article  CAS  PubMed  Google Scholar 

  • Holst B, Lang M, Brandt E et al (2006) Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor. Mol Pharmacol 70(3):936–946

    Article  CAS  PubMed  Google Scholar 

  • Holst B, Mokrosinski J, Lang M et al (2007a) Identification of an efficacy switch region in the ghrelin receptor responsible for interchange between agonism and inverse agonism. J Biol Chem 282(21):15799–15811

    Article  CAS  PubMed  Google Scholar 

  • Holst B, Nygaard R, Valentin-Hansen L et al (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285(6):3973–3985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holst B, Egerod K, Schwartz TW (2007b) Ghrelin: structural and functional properties. In: Sibley DR et al (eds) Handbook of Contemporary Neuropharmacology, vol 3., John Wiley & Sons IncHoboken, New Jersey, pp 765–783

    Google Scholar 

  • Howard AD, Feighner SD, Cully DF et al (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273(5277):974–977

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H, Neumann S, Kleinau G et al (2006) An aromatic environment in the vicinity of serine 281 is a structural requirement for thyrotropin receptor function. Endocrinology 147(4):1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Jensen AS, Sparre-Ulrich AH, Davis-Poynter N et al (2012) Structural diversity in conserved regions like the DRY-Motif among viral 7TM receptors-a consequence of evolutionary pressure? Adv Virol 2012:231813

    PubMed Central  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Landgren S et al (2009) Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A 106(27):11318–11323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang H, Betancourt L, Smith RG (2006) Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 20(8):1772–1785

    Article  CAS  PubMed  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MS, Yoon CY, Park KH et al (2003) Changes in ghrelin and ghrelin receptor expression according to feeding status. NeuroReport 14(10):1317–1320

    CAS  PubMed  Google Scholar 

  • Kjelsberg MA, Cotecchia S, Ostrowski J et al (1992) Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem 267(3):1430–1433

    CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Matsuo H et al (2001) Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab 12(3):118–122

    Article  CAS  PubMed  Google Scholar 

  • Kudo M, Osuga Y, Kobilka BK et al (1996) Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop. J Biol Chem 271(37):22470–22478

    Article  CAS  PubMed  Google Scholar 

  • Lau PN, Chow KB, Chan CB et al (2009) The constitutive activity of the ghrelin receptor attenuates apoptosis via a protein kinase C-dependent pathway. Mol Cell Endocrinol 299(2):232–239

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Cotecchia S, Samama P et al (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14(8):303–307

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517

    Article  CAS  PubMed  Google Scholar 

  • Leung PK, Chow KB, Lau PN et al (2007) The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor. Cell Signal 19(5):1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Levin MC, Marullo S, Muntaner O et al (2002) The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 277(34):30429–30435

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Fortin JP, Beinborn M et al (2007) Four missense mutations in the ghrelin receptor result in distinct pharmacological abnormalities. J Pharmacol Exp Ther 322(3):1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Mary S, Fehrentz JA, Damian M et al (2013) Heterodimerization with its splice variant blocks the ghrelin receptor 1a in a nonsignaling conformation. A study with a purified heterodimer assembled into lipid discs. J Biol Chem 288(34):24656–24665

    Article  CAS  PubMed  Google Scholar 

  • Matthews RP, Guthrie CR, Wailes LM et al (1994) Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol 14(9):6107–6116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mokrosinski J, Frimurer TM, Sivertsen B et al (2012) Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop. J Biol Chem 287(40):33488–33502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mokrosinski J, Holst B (2010) Modulation of the constitutive activity of the ghrelin receptor by use of pharmacological tools and mutagenesis. Methods Enzymol 484:53–73

    Article  CAS  PubMed  Google Scholar 

  • Nogueiras R, Tovar S, Mitchell SE et al (2004) Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes 53(10):2552–2558

    Article  CAS  PubMed  Google Scholar 

  • Nygaard R, Frimurer TM, Holst B et al (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30(5):249–259

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Northup JK, Ozaki N et al (2004) Modification of human 5-HT(2C) receptor function by Cys23Ser, an abundant, naturally occurring amino-acid substitution. Mol Psychiatry 9(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Lu T, Zhang X et al (2012) Identification of two mutations of the RHO gene in two Chinese families with retinitis pigmentosa: correlation between genotype and phenotype. Mol Vis 18:3013–3020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pantel J, Legendre M, Cabrol S et al (2006) Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Invest 116(3):760–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perello M, Sakata I, Birnbaum S et al (2010) Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 67(9):880–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen PS, Woldbye DP, Madsen AN et al (2009) In vivo characterization of high Basal signaling from the ghrelin receptor. Endocrinology 150(11):4920–4930

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rediger A, Piechowski CL, Habegger K et al (2012) MC4R dimerization in the paraventricular nucleus and GHSR/MC3R heterodimerization in the arcuate nucleus: is there relevance for body weight regulation? Neuroendocrinology 95(4):277–288

    Article  CAS  PubMed  Google Scholar 

  • Rediger A, Piechowski CL, Yi CX et al (2011) Mutually opposite signal modulation by hypothalamic heterodimerization of ghrelin and melanocortin-3 receptors. J Biol Chem 286(45):39623–39631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Q, Kurose H, Lefkowitz RJ et al (1993) Constitutively active mutants of the alpha 2-adrenergic receptor. J Biol Chem 268(22):16483–16487

    CAS  PubMed  Google Scholar 

  • Rivera-De la Parra D, Cabral-Macias J, Matias-Florentino M et al (2013) Rhodopsin p. N78I dominant mutation causing sectorial retinitis pigmentosa in a pedigree with intrafamilial clinical heterogeneity. Gene 519(1):173–176

    Article  CAS  PubMed  Google Scholar 

  • Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71(4):959–964

    Article  CAS  PubMed  Google Scholar 

  • Samama P, Cotecchia S, Costa T et al (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268(7):4625–4636

    CAS  PubMed  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW et al (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455(7212):497–502

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H, van Oeffelen WE, Dinan TG et al (2013) Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem 288(1):181–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider EH, Schnell D, Strasser A et al (2010) Impact of the DRY motif and the missing “ionic lock” on constitutive activity and G-protein coupling of the human histamine H4 receptor. J Pharmacol Exp Ther 333(2):382–392

    Article  CAS  PubMed  Google Scholar 

  • Schwartz TW, Frimurer TM, Holst B et al (2006) Molecular mechanism of 7TM receptor activation–a global toggle switch model. Annu Rev Pharmacol Toxicol 46:481–519

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366(5):381–416

    Article  CAS  PubMed  Google Scholar 

  • Singh LP, Andy J, Anyamale V et al (2001) Hexosamine-induced fibronectin protein synthesis in mesangial cells is associated with increases in cAMP responsive element binding (CREB) phosphorylation and nuclear CREB: the involvement of protein kinases A and C. Diabetes 50(10):2355–2362

    Article  CAS  PubMed  Google Scholar 

  • Sivertsen B, Holliday N, Madsen AN et al (2013) Functionally biased signalling properties of 7TM receptors—opportunities for drug development for the ghrelin receptor. Br J Pharmacol 170(7):1349–1362

    Google Scholar 

  • Sivertsen B, Lang M, Frimurer TM et al (2011) Unique interaction pattern for a functionally biased ghrelin receptor agonist. J Biol Chem 286(23):20845–20860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smit MJ, Vischer HF, Bakker RA et al (2007) Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annu Rev Pharmacol Toxicol 47:53–87

    Article  CAS  PubMed  Google Scholar 

  • Steen A, Thiele S, Guo D et al (2013) Biased and constitutive signaling in the CC-chemokine receptor CCR5 by manipulating the interface between transmembrane helices 6 and 7. J Biol Chem 288(18):12511–12521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tolle V, Low MJ (2008) In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 57(1):86–94

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Ostermaier MK, Singhal A et al (2013) Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25(11):2155–2162

    Article  CAS  PubMed  Google Scholar 

  • White JF, Noinaj N, Shibata Y et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagawa M, Yamashita T, Shichida Y (2013) Glutamate acts as a partial inverse agonist to metabotropic glutamate receptor with a single amino acid mutation in the transmembrane domain. J Biol Chem 288(14):9593–9601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte Holst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

MokrosiƄski, J., Madsen, A.N., Holst, B. (2014). Constitutive Activity of the Ghrelin Receptor. In: Portelli, J., Smolders, I. (eds) Central Functions of the Ghrelin Receptor. The Receptors, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0823-3_1

Download citation

Publish with us

Policies and ethics