Skip to main content

Posttranslationally Modified Tubulins and Other Cytoskeletal Proteins: Their Role in Gametogenesis, Oocyte Maturation, Fertilization and Pre-implantation Embryo Development

  • Chapter
  • First Online:
Posttranslational Protein Modifications in the Reproductive System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 759))

Abstract

The cytoskeleton, mainly consisting of microtubules, intermediate filaments and microfilaments, along with cytoskeleton associated and interconnecting proteins as well as the centrosome, plays enormously important roles in all stages of embryogenesis and undergoes significant changes to accommodate a diversity of cellular functions during gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. The varied functions of the cytoskeleton can be accomplished on many different levels, among which are a diversity of different posttranslational modifications (PTMs), chemical modifications that regulate activity, localization and interactions with other cellular molecules. PTMs of the cytoskeleton, including phosphorylation, glycosylation, ubiquitination, detyrosination/tyrosination, (poly)glutamylation and (poly)glycylation, acetylation, sumoylation, and palmitoylation, will be addressed in this chapter. Focus will be on (1) Microtubules, microtubule organizing centers (centrosomes), intermediate filaments, microfilaments and their PTMs; (2) Cytoskeletal functions and cytoskeletal PTMs during gametogenesis and oocyte maturation; and (3) Cytoskeletal functions and cytoskeletal PTMs during fertilization and pre-implantation embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cueva JG, Hsin J, Huang KC, Goodman MB. Posttranslational acetylation of α-tubulin constrains protofilament number in native microtubules. Curr Biol. 2012;22(12):1066–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. McKean PG, Vaughan S, Gull K. The extended tubulin superfamily. J Cell Sci. 2001;114: 2723–33.

    CAS  PubMed  Google Scholar 

  3. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–7.

    CAS  PubMed  Google Scholar 

  4. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981;78:5608–12.

    PubMed Central  PubMed  Google Scholar 

  5. Schatten G, Schatten H, Bestor T, Balczon R. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs. J Cell Biol. 1982;94:455–65.

    CAS  PubMed  Google Scholar 

  6. Wheatley DN, Wang AM, Strugnell GE. Expression of primary cilia in mammalian cells. Cell Biol Int. 1996;20:73–81.

    CAS  PubMed  Google Scholar 

  7. Schatten H, Sun Q-Y. The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol. 2010;21:174–84.

    PubMed  Google Scholar 

  8. Schatten H, Sun QY. The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal. 2011;17(4):506–12. Epub 2011 Jul 11.

    CAS  PubMed  Google Scholar 

  9. Schatten H, Sun QY. New insights into the role of centrosomes in mammalian fertilisation and implications for ART. Reproduction. 2011;142:793–801.

    CAS  PubMed  Google Scholar 

  10. Schatten H, Sun QY. Centrosome dynamics during meiotic spindle formation in oocyte maturation. Mol Reprod Dev. 2011;78:757–68.

    CAS  PubMed  Google Scholar 

  11. Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 2011;25:201–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Lancaster MA, Schroth J, Gleeson JG. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol. 2011;13:702–9.

    CAS  Google Scholar 

  13. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet. 2005;6:194–205.

    CAS  PubMed  Google Scholar 

  14. Schatten H. The mammalian centrosome and its functional significance. Histochem Cell Biol. 2008;129:667–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Schatten H, Sun Q-Y. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol Hum Reprod. 2009;15(9):531–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Schatten H, Sun Q-Y. The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environ Mol Mutagen. 2009;50(8):620–36.

    CAS  PubMed  Google Scholar 

  17. Schatten H, Sun Q-Y. Nuclear-centrosome relationships during fertilization, cell division, embryo development, and in somatic cell nuclear transfer (SCNT) embryos. In: Schatten H, editor. The centrosome. LLC: Springer Science and Business Media; 2012.

    Google Scholar 

  18. Goldman RD, Grin B, Mendez MG, Kuczmarski ER. Intermediate filaments: versatile building blocks of cell structure. Curr Opin Cell Biol. 2008;20(1):28–34. doi:10.1016/j.ceb.2007.11.003.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Sun SC, Kim NH. Molecular mechanisms of asymmetric division in oocytes. Microsc Microanal. 2013;19:883–97.

    CAS  PubMed  Google Scholar 

  20. Hammond JW, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr Opin Cell Biol. 2008;20:71–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol. 2003;4:938–47. PubMed: 14685172.

    CAS  PubMed  Google Scholar 

  22. Wloga D, Gaertig J. Post-translational modifications of microtubules. J Cell Sci. 2010;123:3447–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12:773–86.

    CAS  PubMed  Google Scholar 

  24. Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6:2152–60. PubMed: 17786050.

    CAS  PubMed  Google Scholar 

  25. Rogowski K, Juge F, van Dijk J, Wloga D, Strub JM, Levilliers N, Thomas D, Bré MH, Van Dorsselaer A, Gaertig J, Janke C. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell. 2009;137:1076–87.

    CAS  PubMed  Google Scholar 

  26. Wloga D, Webster DM, Rogowski K, Bré MH, Levilliers N, Jerka-Dziadosz M, Janke C, Dougan ST, Gaertig J. TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev Cell. 2009;16:867–76.

    CAS  PubMed  Google Scholar 

  27. Eddé B, Rossier J, LeCaer JP, Desbruyères E, Gros F, Denoulet P. Posttranslational glutamylation of alpha-tubulin. Science. 1990;247:83–5.

    PubMed  Google Scholar 

  28. Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, MacDonald TL, Sundberg RJ, Rebhun LI, Frankfurter A. Characterization of posttranslational modifications in neuron-specific class III β-tubulin by mass spectrometry. Proc Natl Acad Sci U S A. 1991;88:4685–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Rόdiger M, Plessman U, Kloppel KD, Wehland J, Weber K. Class II tubulin, the major brain β tubulin isotype is polyglutamylated on glutamic acid residue 435. FEBS Lett. 1992;308:101–5.

    Google Scholar 

  30. Ikegami K, Mukai M, Tsuchida JI, Heier RL, MacGregor GR, Setou M. TTLL7 is a mammalian β-tubulin polyglutamylase required for growth of MAP2-positive neurites. J Biol Chem. 2006;281:30707–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ikegami K, Horigome D, Mukai M, Livnat I, MacGregor GR, Setou M. TTLL10 is a protein polyglycylase that can modify nucleosome assembly protein 1. FEBS Lett. 2008;582: 1129–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, Janke C. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol Cell. 2007;26:437–48.

    PubMed  Google Scholar 

  33. Ikegami K, Setou M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett. 2009;583:1957–63.

    CAS  PubMed  Google Scholar 

  34. Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD. A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J. 2007;21:836–50. PubMed: 17244818.

    CAS  PubMed  Google Scholar 

  35. Rodriguez de la Vega M, Sevilla RG, Hermoso A, Lorenzo J, Tanco S, Diez A, Fricker LD, Bautista JM, Aviles FX. Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J. 2007;21:851–65 [PubMed: 17244817].

    CAS  PubMed  Google Scholar 

  36. Paturle-Lafanechère L, Eddé B, Denoulet P, Van Dorsselaer A, Mazarguil H, Le Caer JP, Wehland J, Job D. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry. 1991;30:10523–8.

    PubMed  Google Scholar 

  37. Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, Bosson A, Peris L, Gold ND, Lacroix B, Grau MB, Bec N, Larroque C, Desagher S, Holzer M, Andrieux A, Moutin MJ, Janke C. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell. 2010;143:564–78.

    CAS  PubMed  Google Scholar 

  38. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006;16:2166–72. PubMed: 17084703.

    CAS  PubMed  Google Scholar 

  39. Liao G, Gundersen GG. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem. 1998;273:9797–803.

    CAS  PubMed  Google Scholar 

  40. Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008;31:449–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. L’Hernault SW, Rosenbaum JL. Chlamydomonas α-tubulin is posttranslationally modified by acetylation on the ε-amino group of a lysine. Biochemistry. 1985;24:473–8.

    PubMed  Google Scholar 

  42. Chu CW, Hou F, Zhang J, Phu L, Loktev AV, Kirkpatrick DS, Jackson PK, Zhao Y, Zou H. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol Biol Cell. 2011;22:448–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2002;21:6820–31. PubMed: 12486003.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–8. PubMed: 12024216.

    CAS  PubMed  Google Scholar 

  45. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+− dependent tubulin deacetylase. Mol Cell. 2003;11:437–44. PubMed: 12620231.

    CAS  PubMed  Google Scholar 

  46. Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci. 2009;122:3531–41.

    CAS  PubMed  Google Scholar 

  47. Sharma N, Bryant J, Wloga D, Donaldson R, Davis RC, Jerka-Dziadosz M, Gaertig J. Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J Cell Biol. 2007;178:1065–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Peris L, Wagenbach M, Lafanechère L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol. 2009;185:1159–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kreitzer G, Liao G, Gundersen GG. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell. 1999;10:1105–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Dunn S, Morrison EE, Liverpool TB, Molina-París C, Cross RA, Alonso MC, Peckham M. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci. 2008;121:1085–95.

    CAS  PubMed  Google Scholar 

  51. Konishi Y, Setou M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci. 2009;12:559–67.

    CAS  PubMed  Google Scholar 

  52. Drake PJ, Griffiths GJ, Shaw L, Benson RP, Corfe BM. Application of high-content analysis to the study of post-translational modifications of the cytoskeleton. J Proteome Res. 2009;8:28–34.

    CAS  PubMed  Google Scholar 

  53. Leech SH, Evans CA, Shaw L, Wong CH, Connolly J, Griffiths JR, Whetton AD, Corfe BM. Proteomic analyses of intermediate filaments reveals cytokeratin 8 is highly acetylated: implications for colorectal epithelial homeostasis. Proteomics. 2008;8:279–88.

    CAS  PubMed  Google Scholar 

  54. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.

    CAS  PubMed  Google Scholar 

  55. Clark ES, Weaver AM. A new role for cortactin in invadopodia: regulation of protease secretion. Eur J Cell Biol. 2008;87:581–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Samant SA, Courson DS, Sundaresan NR, Pillai VB, Tan M, Zhao Y, Shroff SG, Rock RS, Gupta MP. HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. J Biol Chem. 2011;286:5567–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Zenckeck WD, Xiao H, Weiss LM. Lysine post-translational modifications and the cytoskeleton. Essays Biochem. 2012;52:135–45.

    Google Scholar 

  58. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23:607–18.

    CAS  PubMed  Google Scholar 

  59. Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Eddé B. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science. 2005;308:1758–62.

    CAS  PubMed  Google Scholar 

  60. Regnard C, Fesquet D, Janke C, Boucher D, Desbruyères E, Koulakoff A, Insina C, Travo P, Eddé B. Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase. J Cell Sci. 2003;116:4181–90.

    CAS  PubMed  Google Scholar 

  61. Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J, Kishi K, Ong SE, Gammeltoft S, Carr SA, Yaffe MB. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J. 2007;26:2262–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Vaz Meirelles G, Ferreira Lanza DC, da Silva JC, Santana Bernachi J, Paes Leme AF, Kobarg J. Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalization with proteins at the centrosome. J Proteome Res. 2010;9: 6298–316.

    CAS  PubMed  Google Scholar 

  63. Sardon T, Pache RA, Stein A, Molina H, Vernos I, Aloy P. Uncovering new substrates for Aurora A kinase. EMBO Rep. 2010;11:977–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Chang J, Cizmecioglu O, Hoffmann I, Rhee K. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 2010;29: 2395–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. D’Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, Dynlacht B, Pagano M. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010;466:138–42.

    PubMed Central  PubMed  Google Scholar 

  66. Tugendreich S, Tomkiel J, Earnshaw W, Hieter P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell. 1995;81:261–8.

    CAS  PubMed  Google Scholar 

  67. Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev. 1999;13:2242–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Gstaiger M, Marti A, Krek W. Association of human SCF(SKP2) subunit p19(SKP1) with interphase centrosomes and mitotic spindle poles. Exp Cell Res. 1999;247:554–62.

    CAS  PubMed  Google Scholar 

  69. Fisk HA. Many pathways to destruction: the centrosome and its control by and role in regulated proteolysis. Chapter 8. In: Schatten H, editor. The centrosome. LLC: Springer Science and Business Media; 2012.

    Google Scholar 

  70. Prosser SL, Fry AM. Regulation of the centrosome cycle by protein degradation. Chapter 9. In: Schatten H, editor. The centrosome. LLC: Springer Science and Business Media; 2012.

    Google Scholar 

  71. Fukasawa K. Molecular links between centrosome duplication and other cell cycle associated events. Chapter 10. In: Schatten H, editor. The centrosome. LLC: Springer Science and Business Media; 2012.

    Google Scholar 

  72. Kais Z, Parvin JD. Centrosome regulation and breast cancer. Chapter 14. In: Schatten H, editor. The centrosome. LLC: Springer Science and Business Media; 2012.

    Google Scholar 

  73. Korzeniewski N, Cuevas R, Duensing A, Duensing S. Daughter centriole elongation is controlled by proteolysis. Mol Biol Cell. 2010;21:3942–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gonczy P. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell. 2007;13:203–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Puklowski A, Homsi Y, Keller D, May M, Chauhan S, Kossatz U, Grunwald V, Kubicka S, Pich A, Manns MP, et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat Cell Biol. 2011;13:1004–9.

    CAS  PubMed  Google Scholar 

  76. Klein UR, Nigg EA. SUMO-dependent regulation of centrin-2. J Cell Sci. 2009;122: 3312–21.

    CAS  PubMed  Google Scholar 

  77. Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, Drummond IA, Beier DR. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129:5839–46.

    CAS  PubMed  Google Scholar 

  78. Meraldi P, Nigg EA. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci. 2001;114:3749–57.

    CAS  PubMed  Google Scholar 

  79. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    CAS  PubMed  Google Scholar 

  80. Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A. 2000;97:217–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Paturle-Lafanechère L, Manier M, Trigault N, Pirollet F, Mazarguil H, Didier JD. Accumulation of δ 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci. 1994;107:1529–43.

    PubMed  Google Scholar 

  82. L’Hernault SW, Rosenbaum JL. Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly. J Cell Biol. 1983;97:258–63.

    PubMed  Google Scholar 

  83. Piperno G, Fuller MT. Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol. 1985;101:2085–94.

    CAS  PubMed  Google Scholar 

  84. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV. The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A. 2010;107:21517–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J. MEC-17 is an alpha-tubulin acetyltransferase. Nature. 2010;467:218–22. doi:10.1038/nature09324.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bré MH, de Nechaud B, Wolff A, Fleury A. Glutamylated tubulin probed in ciliates with the monoclonal antibody GT335. Cell Motil Cytoskeleton. 1994;27:337–49.

    PubMed  Google Scholar 

  87. Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M. Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci U S A. 2010;107:10490–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Vogel P, Hansen G, Fontenot G, Read R. Tubulin tyrosine ligase-like 1 deficiency results in chronic rhinosinusitis and abnormal development of spermatid flagella in mice. Vet Pathol. 2010;47:703–12.

    CAS  PubMed  Google Scholar 

  89. Geimer S, Teltenkotter A, Plessmann U, Weber K, Lechtreck KF. Purification and characterization of basal apparatuses from a flagellate green alga. Cell Motil Cytoskeleton. 1997;37:72–85.

    CAS  PubMed  Google Scholar 

  90. Piperno G, LeDizet M, Chang XJ. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol. 1987;104:289–302.

    CAS  PubMed  Google Scholar 

  91. Bobinnec Y, Moudjou M, Fouquet JP, Desbruyères E, Eddé B, Bornens M. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton. 1998;39:223–32.

    CAS  PubMed  Google Scholar 

  92. Wolff A, de Nechaud B, Chillet D, Mazarguil H, Desbruyeres E, Audebert S, Edde B, Gros F, Denoulet P. Distribution of glutamylated α and β-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur J Cell Biol. 1992;59:425–32.

    CAS  PubMed  Google Scholar 

  93. Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Eddé B, Bornens M. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol. 1998;143:1575–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Abal M, Keryer G, Bornens M. Centrioles resist forces applied on centrosomes during G2/M transition. Biol Cell. 2005;97:425–34.

    CAS  PubMed  Google Scholar 

  95. Gundersen GG, Bulinski JC. Distribution of tyrosinated and nontyrosinated α-tubulin during mitosis. J Cell Biol. 1986;102:1118–26.

    CAS  PubMed  Google Scholar 

  96. Maney T, Hunter AW, Wagenbach M, Wordeman L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol. 1998;142:787–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K, Gerlich DW, Janke C. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol. 2010;189:945–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. McNally K, Audhya A, Oegema K, McNally FJ. Katanin controls mitotic and meiotic spindle length. J Cell Biol. 2006;175:881–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Sonbuchner TM, Rath U, Sharp DJ. KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture. Cell Cycle. 2010;9:2403–11.

    CAS  PubMed  Google Scholar 

  100. Connell JW, Lindon C, Luzio JP, Reid E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic. 2009;10:42–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Mammalian spermatogenesis. In: Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED, editors. Histological and histopathological evaluation of the testis. 1st ed. Clearwater: Cache River Press; 1990. p. 1–40.

    Google Scholar 

  102. Sutovsky P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech. 2003;61:88–102.

    CAS  PubMed  Google Scholar 

  103. Sutovsky P, Manandhar G, Wu A, Oko R. Interactions of the sperm perinuclear theca with the oocyte: Implications for oocyte activation, anti-polyspermy defense and assisted reproduction. Microsc Res Tech. 2003;61:362–78.

    PubMed  Google Scholar 

  104. Sutovsky P. Visualization of sperm accessory structures in the mammalian spermatids, spermatozoa and zygotes. In: Schatten H, editor. Methods in molecular biology, vol 253: germ cell protocols: vol. 1 sperm and oocyte analysis. Totowa: Human Press; 2004. p. 59–77.

    Google Scholar 

  105. Baska KM, Sutovsky P. Protein modification by ubiquitination and is consequences for spermatogenesis, sperm maturation, fertilization and pre-implantation embryonic development. In: Tokumoto T, editor. New impact on protein modifications in the regulation of reproductive system. Kerala: Research Signpost; 2005. p. 83–114.

    Google Scholar 

  106. Sutovsky P, Manandhar G. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In: DeJonge C, Barrat C, editors. The sperm cell: production, maturation, fertilization, regeneration. Cambridge: Cambridge University Press; 2006. p. 1–30.

    Google Scholar 

  107. Manandhar G, Sutovsky P. Comparative histology and subcellular structure of mammalian spermatogenesis and spermatozoa. In: Schatten H, editor. Comparative reproductive biology. Malden: Iowa State Press. Ames, Iowa: A Blackwell Publishing Company; 2007. p. 81–98.

    Google Scholar 

  108. Nayernia K, Li M, Engel W. Spermatogonial stem cells. In: Schatten H, Totowa NJ, editors. Methods in molecular biology, vol. 253: germ cell protocols: vol. 1 sperm and oocyte analysis. New Jersey, Totowa: Humana Press Inc.; 2004.

    Google Scholar 

  109. Manandhar G, Schatten H, Sutovsky P. Centrosome reduction during gametogenesis and its significance. Biol Reprod. 2005;72:2–13.

    CAS  PubMed  Google Scholar 

  110. Sun QY, Schatten H. Centrosome inheritance after fertilization and nuclear transfer in mammals. In: Sutovsky P, editor. Somatic cell nuclear transfer. Vol. 591. Landes bioscience. Adv Exp Med Biol. 2007. pp. 58–71

    Google Scholar 

  111. Kieszenbaum AL. Sperm axoneme: a tale of tubulin posttranslational diversity. Mol Reprod Dev. 2002;62:1–3.

    Google Scholar 

  112. Szollosi D, Calarco P, Donahue RP. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci. 1972;11:521–41.

    CAS  PubMed  Google Scholar 

  113. Schatten H, Walter M, Biessmann H, Schatten G. Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil Cytoskeleton. 1992;23:61–70.

    CAS  PubMed  Google Scholar 

  114. Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update. 2009;15(5):573–85.

    PubMed  Google Scholar 

  115. Miao YL, Sun QY, Zhang X, Zhao JG, Zhao MT, Spate L, Prather RS, Schatten H. Centrosome abnormalities during porcine oocyte aging. Environ Mol Mutagen. 2009;50(8):666–71.

    CAS  PubMed  Google Scholar 

  116. Schatten H, Sun QY. Chromosome behaviour and spindle formation in mammalian oocytes. In: Trounson A, Gosden R, Eichenlaub-Ritter U, editors. Biology and pathology of the oocyte: role in fertility, medicine and nuclear reprogramming. New York: Cambridge University Press; 2013.

    Google Scholar 

  117. Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep. 2011;44(3):147–57.

    CAS  PubMed  Google Scholar 

  118. Ai J-S, Wang Q, Li M, Shi LH, Ola SI, Xiong B, Yin S, Chen DY, Sun QY. Roles of microtubules and microfilaments in spindle movements during rat oocyte meiosis. J Reprod Dev. 2008;54:391–6.

    PubMed  Google Scholar 

  119. Ai J-S, Wang Q, Yin S, Shi L-H, Xiong B, Ouyang Y-C, Hou Y, Chen D-Y, Schatten H, Sun Q-Y. Regulation of peripheral spindle movement and spindle rotation during mouse oocyte meiosis: new perspectives. Microsc Microanal. 2008;14:349–56.

    CAS  PubMed  Google Scholar 

  120. Schatten G, Simerly C, Asai DJ, Szöke E, Cooke P, Schatten H. Acetylated α-tubulin in microtubules during mouse fertilization and early development. Dev Biol. 1988;130:74–86.

    CAS  PubMed  Google Scholar 

  121. Schatten G, Simerly C, Schatten H. Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci U S A. 1985;82:4152–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Maro B, Howlett SK, Webb M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol. 1985;101:1665–72.

    CAS  PubMed  Google Scholar 

  123. Rawe VY, Díaz ES, Abdelmassih R, Wójcik C, Morales P, Sutovsky P, Chemes HE. The role of sperm proteasomes during sperm aster formation and early zygote development: Implications for fertilization failure in humans. Hum Reprod. 2008;23(3):573–80.

    CAS  PubMed  Google Scholar 

  124. Sluder G. Centrosome duplication and its regulation in the higher animal cell. In: Nigg E, editor. Centrosomes in development and disease. Weinheim: Wiley-VCA Verlag GmbH & CoKGaG; 2004. p. 167–89.

    Google Scholar 

  125. Wilkinson CJ, Andersen JS, Mann M, Nigg EA. A proteomic approach to the inventory of the human centrosome. In: Nigg E, editor. Centrosomes in development and disease. Weinheim: Wiley-VCA Verlag GmbH & CoKGaG; 2004. p. 125–42.

    Google Scholar 

  126. Wojcik C, DeMartino GN. Intracellular localization of proteasomes. Int J Biochem Cell Biol. 2004;35:579–89.

    Google Scholar 

  127. Fuentealba LC, Eivers E, Geissert D, Taelman V, DeRobertis EM. Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci U S A. 2008;105:7732–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Martin L, Besch-Williford C, Lai L, Cheong HT, Im GS, Park KW, Murphy C, Hao Y, Ellersieck MR, Keisler DH, Schatten H, Green JA, Prather RS. Morphologic and histologic comparisons between in vivo and nuclear transfer derived porcine embryos. Mol Reprod Dev. 2007;74:952–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Niakan KK, Han J, Pedersen RA, Simon C, Reijo Pera RA. Human pre-implantation embryo development. Development. 2012;139(5):829–41. doi:10.1242/dev.060426.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Houliston E, Maro B. Posttranslational modification of distinct microtubule subpopulations during cell polarization and differentiation in the mouse preimplantation embryo. J Cell Biol. 1989;108:543–51.

    CAS  PubMed  Google Scholar 

  131. Quinones GB, Danowski BA, Devaraj A, Singh V, Ligon LA. The posttranslational modification of tubulin undergoes a switch from detyrosination to acetylation as epithelial cells become polarized. Mol Biol Cell. 2011;22:1045–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Hall VJ, Jacobsen JV, Rasmussen MA, Hyttel P. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states. Dev Dyn. 2010;239:2911–20.

    CAS  PubMed  Google Scholar 

  133. Hyttel P, Niemann H. Ultrastructure of porcine embryos following development in vitro versus in vivo. Mol Reprod Dev. 1990;27:136–44.

    CAS  PubMed  Google Scholar 

  134. Oestrup O, Hall V, Petkov SG, Wolf XA, Hyldig S, Hyttel P. From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reprod Domest Anim. 2009;44 Suppl 3:39–49.

    PubMed  Google Scholar 

  135. Wong C, Loewke K, Bossert N, Behr B, DeJonge C, Baer T, Reijo Pera RR. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21. PubMed: 20890283.

    CAS  PubMed  Google Scholar 

  136. Zink S, Grosse L, Freikamp A, Bänfer S, Müksch F, Jacob R. Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells. J Cell Sci. 2012;125(Pt 24):5998–6008. doi:10.1242/jcs.109470.

    CAS  PubMed  Google Scholar 

  137. Mostowy S, Pascale CP. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol. 2012;13:183–94.

    CAS  PubMed  Google Scholar 

  138. Zhu JL, Lin SL, Li M, Ouyang YC, Hou Y, Schatten H, Sun QY. Septin2 is modified by SUMOylation and required for chromosome congression in mouse oocytes. Cell Cycle. 2010;9(8):1607–16.

    CAS  PubMed  Google Scholar 

  139. Zhu J, Qi ST, Wang YP, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY. Septin1 is required for spindle assembly and chromosome congression in mouse oocytes. Dev Dyn. 2011;240(10):2281–9. doi:10.1002/dvdy.22725. PMID: 21932310.

    CAS  PubMed  Google Scholar 

  140. Li S, Ou XH, Wei L, Wang ZB, Zhang QH, Ouyang YC, Hou Y, Schatten H, Sun QY. Septin 7 is required for orderly meiosis in mouse oocytes. Cell Cycle. 2012;11(17):3211–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schatten, H., Sun, QY. (2014). Posttranslationally Modified Tubulins and Other Cytoskeletal Proteins: Their Role in Gametogenesis, Oocyte Maturation, Fertilization and Pre-implantation Embryo Development. In: Sutovsky, P. (eds) Posttranslational Protein Modifications in the Reproductive System. Advances in Experimental Medicine and Biology, vol 759. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0817-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0817-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0816-5

  • Online ISBN: 978-1-4939-0817-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics