Skip to main content

ISGylation: A Conserved Pathway in Mammalian Pregnancy

  • Chapter
  • First Online:
Book cover Posttranslational Protein Modifications in the Reproductive System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 759))

Abstract

Successful pregnancy includes remodeling and differentiation of the endometrium in response to sex steroid hormones, development of maternal immunotolerance to the implanting embryo, and modification of the local uterine environment by the embryo to suit its own needs. The major signal released by the ruminant conceptus during establishment of pregnancy is interferon-tau (IFNT) that stimulates the expression of many genes in the endometrium and ovary. One of these genes is called interferon stimulated gene 15 (ISG15), which encodes a ubiquitin homolog with a C-terminal Gly that becomes covalently attached to Lys residues on targeted proteins through an ATP-dependent multi-step enzymatic reaction called ISGylation. The conceptus-derived induction of endometrial ISGs also occurs in mouse and human deciduas and placenta, in response to pregnancy presumably through action of cytokines such as interleukins and type I IFN. Described herein is evidence to support the concept that ISGylation is a maternal response to the developing conceptus, implantation and placentation that is conserved across mammalian pregnancy. Although the precise role for ISG15 remains elusive during pregnancy, it is clear that up-regulation in response to pregnancy may impart a pre-emptive defense to infection or other environmental insults, and protection of the conceptus against inflammatory insults across species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazer FW, Roberts RM. Biochemical aspects of conceptus–endometrial interactions. J Exp Zool. 1983;228(2):373–83.

    Article  CAS  PubMed  Google Scholar 

  2. Godkin JD, Bazer FW, Roberts RM. Ovine trophoblast protein 1, an early secreted blastocyst protein, binds specifically to uterine endometrium and affects protein synthesis. Endocrinology. 1984;114(1):120–30.

    Article  CAS  PubMed  Google Scholar 

  3. Hansen TR, Kazemi M, Keisler DH, Malathy PV, Imakawa K, Roberts RM. Complex binding of the embryonic interferon, ovine trophoblast protein-1, to endometrial receptors. J Interferon Res. 1989;9(2):215–25.

    Article  CAS  PubMed  Google Scholar 

  4. Hansen TR, Austin KJ, Perry DJ, Pru JK, Teixeira MG, Johnson GA. Mechanism of action of interferon-tau in the uterus during early pregnancy. J Reprod Fertil Suppl. 1999;54:329–39.

    CAS  PubMed  Google Scholar 

  5. Naivar KA, Ward SK, Austin KJ, Moore DW, Hansen TR. Secretion of bovine uterine proteins in response to type I interferons. Biol Reprod. 1995;52(4):848–54.

    Article  CAS  PubMed  Google Scholar 

  6. Rueda BR, Naivar KA, George EM, Austin KJ, Francis H, Hansen TR. Recombinant interferon-tau regulates secretion of two bovine endometrial proteins. J Interferon Res. 1993; 13(4):303–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bartol FF, Roberts RM, Bazer FW, Thatcher WW. Characterization of proteins produced in vitro by bovine endometrial explants. Biol Reprod. 1985;33(3):745–59.

    Article  CAS  PubMed  Google Scholar 

  8. Thatcher WW, Danet-Desnoyers G, Wetzels C. Regulation of bovine endometrial prostaglandin secretion and the role of bovine trophoblast protein-1 complex. Reprod Fertil Dev. 1992;4(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  9. Bazer FW, Vallet JL, Roberts RM, Sharp DC, Thatcher WW. Role of conceptus secretory products in establishment of pregnancy. J Reprod Fertil. 1986;76(2):841–50.

    Article  CAS  PubMed  Google Scholar 

  10. Imakawa K, Anthony RV, Kazemi M, Marotti KR, Polites HG, Roberts RM. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature. 1987;330(6146):377–9.

    Article  CAS  PubMed  Google Scholar 

  11. Imakawa K, Hansen TR, Malathy PV, Anthony RV, Polites HG, Marotti KR, et al. Molecular cloning and characterization of complementary deoxyribonucleic acids corresponding to bovine trophoblast protein-1: a comparison with ovine trophoblast protein-1 and bovine interferon-alpha II. Mol Endocrinol. 1989;3(1):127–39.

    Article  CAS  PubMed  Google Scholar 

  12. Hansen TR, Leaman DW, Cross JC, Mathialagan N, Bixby JA, Roberts RM. The genes for the trophoblast interferons and the related interferon-alpha II possess distinct 5′-promoter and 3′-flanking sequences. J Biol Chem. 1991;266(5):3060–7.

    CAS  PubMed  Google Scholar 

  13. Roberts RM, Liu L, Alexenko A. New and atypical families of type I interferons in mammals: comparative functions, structures, and evolutionary relationships. Prog Nucleic Acid Res Mol Biol. 1997;56:287–325.

    Article  CAS  PubMed  Google Scholar 

  14. Hess AP, Hamilton AE, Talbi S, Dosiou C, Nyegaard M, Nayak N, et al. Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol Reprod. 2007;76(1):102–17 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  15. Ashley RL, Henkes LE, Bouma GJ, Pru JK, Hansen TR. Deletion of the Isg15 gene results in up-regulation of decidual cell survival genes and down-regulation of adhesion genes: implication for regulation by IL-1beta. Endocrinology. 2010;151(9):4527–36 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  16. Goding JR. The demonstration that PGF2alpha is the uterine luteolysin in the ewe. J Reprod Fertil. 1974;38(2):261–71.

    Article  CAS  PubMed  Google Scholar 

  17. Inskeep EK, Murdoch WJ. Relation of ovarian functions to uterine and ovarian secretion of prostaglandins during the estrous cycle and early pregnancy in the ewe and cow. Int Rev Physiol. 1980;22:325–56.

    CAS  PubMed  Google Scholar 

  18. McCracken JA, Barcikowski B, Carlson JC, Green K, Samuelsson B. The physiological role of prostaglandin F2alpha in corpus luteum regression. Adv Biosci. 1973;9:599–624.

    CAS  PubMed  Google Scholar 

  19. Asselin E, Drolet P, Fortier MA. Cellular mechanisms involved during oxytocin-induced prostaglandin F2alpha production in endometrial epithelial cells in vitro: role of cyclooxygenase-2. Endocrinology. 1997;138(11):4798–805.

    CAS  PubMed  Google Scholar 

  20. Bazer FW, Spencer TE, Ott TL. Interferon tau: a novel pregnancy recognition signal. Am J Reprod Immunol. 1997;37(6):412–20.

    Article  CAS  PubMed  Google Scholar 

  21. Spencer TE, Bazer FW. Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology. 1996;137(3):1144–7.

    CAS  PubMed  Google Scholar 

  22. Wathes DC, Lamming GE. The oxytocin receptor, luteolysis and the maintenance of pregnancy. J Reprod Fertil Suppl. 1995;49:53–67.

    CAS  PubMed  Google Scholar 

  23. Bathgate R, Tillmann G, Ivell R. Molecular mechanisms of bovine oxytocin receptor gene regulation. Biol Reprod. 1998;58(Suppl):121.

    Google Scholar 

  24. Robinson RS, Mann GE, Lamming GE, Wathes DC. The effect of pregnancy on the expression of uterine oxytocin, oestrogen and progesterone receptors during early pregnancy in the cow. J Endocrinol. 1999;160(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  25. Hansen TR, Henkes LK, Ashley RL, Bott RC, Antoniazzi AQ, Han H. Endocrine actions of interferon-tau in ruminants. Soc Reprod Fertil Suppl. 2010;67:325–40 (Research Support, U.S. Gov’t, Non-P.H.S. Review).

    CAS  PubMed  Google Scholar 

  26. Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HH, Schmidt SE, et al. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the pre-attachment period. Biol Reprod. 2006;74:253–64.

    Article  CAS  PubMed  Google Scholar 

  27. Antoniazzi AQ, Webb BT, Romero JJ, Ashley RL, Smirnova NP, Henkes LE, et al. Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin f2 alpha-induced luteolysis in ewes. Biol Reprod. 2013;88(6):144.

    Article  PubMed  Google Scholar 

  28. Bott RC, Ashley RL, Henkes LE, Antoniazzi AQ, Bruemmer JE, Niswender GD, et al. Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biol Reprod. 2010;82(4):725–35 (Controlled Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira JF, Henkes LE, Ashley RL, Purcell SH, Smirnova NP, Veeramachaneni DN, et al. Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein. Endocrinology. 2008;149(3):1252–9 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  30. Farrell PJ, Broeze RJ, Lengyel P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature. 1979;279(5713):523–5 (Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  31. Korant BD, Blomstrom DC, Jonak GJ, Knight Jr E. Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J Biol Chem. 1984;259(23):14835–9.

    CAS  PubMed  Google Scholar 

  32. Haas AL, Ahrens P, Bright PM, Ankel H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem. 1987;262(23):11315–23 (Comparative Study Research Support, U.S. Gov’t, P.H.S.).

    CAS  PubMed  Google Scholar 

  33. Loeb KR, Haas AL. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem. 1992;267(11):7806–13 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    CAS  PubMed  Google Scholar 

  34. Narasimhan J, Potter JL, Haas AL. Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem. 1996;271(1):324–30 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  35. Austin KJ, Ward SK, Teixeira MG, Dean VC, Moore DW, Hansen TR. Ubiquitin cross-reactive protein is released by the bovine uterus in response to interferon during early pregnancy. Biol Reprod. 1996;54(3):600–6.

    Article  CAS  PubMed  Google Scholar 

  36. Austin KJ, Carr AL, Pru JK, Hearne CE, George EL, Belden EL, et al. Localization of ISG15 and conjugated proteins in bovine endometrium using immunohistochemistry and electron microscopy. Endocrinology. 2004;145:967–75.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson GA, Austin KJ, Van Kirk EA, Hansen TR. Pregnancy and interferon-tau induce conjugation of bovine ubiquitin cross-reactive protein to cytosolic uterine proteins. Biol Reprod. 1998;58(4):898–904.

    Article  CAS  PubMed  Google Scholar 

  38. Austin KA, Pru JK, Hansen TR. Complementary deoxyribonucleic acid sequence encoding bovine ubiquitin cross-reactive protein: a comparison with ubiquitin and a 15-kDa ubiquitin homolog. Endocrine. 1996;5:1–7.

    Article  Google Scholar 

  39. Hansen TR, Austin KJ, Johnson GA. Transient ubiquitin cross-reactive protein gene expression in the bovine endometrium. Endocrinology. 1997;138(11):5079–82.

    Article  CAS  PubMed  Google Scholar 

  40. Perry DJ, Austin KJ, Hansen TR. Cloning of interferon-stimulated gene 17: the promoter and nuclear proteins that regulate transcription. Mol Endocrinol. 1999;13(7):1197–206.

    Article  CAS  PubMed  Google Scholar 

  41. Staggs KL, Austin KJ, Johnson GA, Teixeira MG, Talbott CT, Dooley VA, et al. Complex induction of bovine uterine proteins by interferon-tau. Biol Reprod. 1998;59(2):293–7 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  42. Pru JK, Austin KJ, Perry DJ, Nighswonger AM, Hansen TR. Production, purification, and carboxy-terminal sequencing of bioactive recombinant bovine interferon-stimulated gene product 17. Biol Reprod. 2000;63(2):619–28.

    Article  CAS  PubMed  Google Scholar 

  43. Johnson GA, Spencer TE, Hansen TR, Austin KJ, Burghardt RC, Bazer FW. Expression of the interferon tau inducible ubiquitin cross-reactive protein in the ovine uterus. Biol Reprod. 1999;61(1):312–8 (Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  44. Joyce MM, White FJ, Burghardt RC, Muniz JJ, Spencer TE, Bazer FW, et al. Interferon stimulated gene 15 conjugates to endometrial cytosolic proteins and is expressed at the uterine-placental interface throughout pregnancy in sheep. Endocrinology. 2005;146(2):675–84 (Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  45. Han H, Austin KJ, Rempel LA, Hansen TR. Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. J Endocrinol. 2006;191(2):505–12 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  46. Gifford CA, Racicot K, Clark DS, Austin KJ, Hansen TR, Lucy MC, et al. Regulation of interferon-stimulated genes in peripheral blood leukocytes in pregnant and bred, nonpregnant dairy cows. J Dairy Sci. 2007;90(1):274–80.

    Article  CAS  PubMed  Google Scholar 

  47. Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 2001;20(3):362–71 (Comparative Study Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rempel LA, Francis BR, Austin KJ, Hansen TR. Isolation and sequence of an interferon-tau-inducible, pregnancy- and bovine interferon-stimulated gene product 15 (ISG15)-specific, bovine ubiquitin-activating E1-like (UBE1L) enzyme. Biol Reprod. 2005;72(2):365–72 (Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  49. Narasimhan J, Wang M, Fu Z, Klein JM, Haas AL, Kim JJ. Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J Biol Chem. 2005;280(29):27356–65 (Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  50. Sorensen CM, Rempel LA, Nelson SR, Francis BR, Perry DJ, Lewis RV, et al. The hinge region between two ubiquitin-like domains destabilizes recombinant ISG15 in solution. Biochemistry. 2007;46(3):772–80.

    Article  CAS  PubMed  Google Scholar 

  51. Bade VN, Nickels J, Keusekotten K, Praefcke GJ. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region. PLoS One. 2012;7(6):e38294 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Okumura F, Lenschow DJ, Zhang DE. Nitrosylation of ISG15 prevents the disulfide bond-mediated dimerization of ISG15 and contributes to effective ISGylation. J Biol Chem. 2008;283(36):24484–8 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. D’Cunha J, Knight Jr E, Haas AL, Truitt RL, Borden EC. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci U S A. 1996;93(1):211–5 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    Article  PubMed Central  PubMed  Google Scholar 

  54. Knight Jr E, Cordova B. IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. J Immunol. 1991;146(7):2280–4 (in vitro).

    CAS  PubMed  Google Scholar 

  55. Recht M, Borden EC, Knight Jr E. A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. J Immunol. 1991;147(8):2617–23 (Research Support, Non-U.S. Gov’t).

    CAS  PubMed  Google Scholar 

  56. Padovan E, Terracciano L, Certa U, Jacobs B, Reschner A, Bolli M, et al. Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res. 2002;62(12):3453–8 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    CAS  PubMed  Google Scholar 

  57. Owhashi M, Taoka Y, Ishii K, Nakazawa S, Uemura H, Kambara H. Identification of a ubiquitin family protein as a novel neutrophil chemotactic factor. Biochem Biophys Res Commun. 2003;309(3):533–9 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  58. Bogunovic D, Boisson-Dupuis S, Casanova JL. ISG15: leading a double life as a secreted molecule. Exp Mol Med. 2013;45:e18.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–8 (Case Reports Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Toyokawa K, Leite F, Ott TL. Cellular localization and function of the antiviral protein, ovine Mx1 (oMx1): II. The oMx1 protein is a regulator of secretion in an ovine glandular epithelial cell line. Am J Reprod Immunol. 2007;57(1):23–33 (Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  61. Austin KJ, Bany BM, Belden EL, Rempel LA, Cross JC, Hansen TR. Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Endocrinology. 2003;144(7):3107–13.

    Article  CAS  PubMed  Google Scholar 

  62. Bany BM, Cross JC. Post-implantation mouse conceptuses produce paracrine signals that regulate the uterine endometrium undergoing decidualization. Dev Biol. 2006;294(2): 445–56.

    Article  CAS  PubMed  Google Scholar 

  63. Kashiwagi A, DiGirolamo CM, Kanda Y, Niikura Y, Esmon CT, Hansen TR, et al. The postimplantation embryo differentially regulates endometrial gene expression and decidualization. Endocrinology. 2007;148(9):4173–84.

    Article  CAS  PubMed  Google Scholar 

  64. Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol. 2005;25(15):6338–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, et al. From the cover: IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A. 2007;104(4):1371–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Engel DA, Samanta H, Brawner ME, Lengyel P. Interferon action: transcriptional control of a gene specifying a 56,000-Da protein in Ehrlich ascites tumor cells. Virology. 1985;142(2):389–97 (Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  67. Gariglio M, Cinato E, Panico S, Cavallo G, Landolfo S. Activation of interferon-inducible genes in mice by poly rI:rC or alloantigens. J Immunother. 1991;10(1):20–7 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  68. Kim J, Kang SG, Kim JI, Park JH, Kim SK, Cho DJ, et al. Implication of ADAM-8, -9, -10, -12, -15, -17, and ADAMTS-1 in implantational remodeling of a mouse uterus. Yonsei Med J. 2006;47(4):558–67 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Laigaard J, Sorensen T, Placing S, Holck P, Frohlich C, Wojdemann KR, et al. Reduction of the disintegrin and metalloprotease ADAM12 in preeclampsia. Obstet Gynecol. 2005;106(1):144–9 (Comparative Study Research Support, U.S. Gov’t, Non-P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  70. Cowans NJ, Spencer K. First-trimester ADAM12 and PAPP-A as markers for intrauterine fetal growth restriction through their roles in the insulin-like growth factor system. Prenat Diagn. 2007;27(3):264–71 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  71. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33 (Research Support, U.S. Gov’t, P.H.S. Review).

    Article  CAS  PubMed  Google Scholar 

  72. Krug RM, Zhao C, Beaudenon S. Properties of the ISG15 E1 enzyme UbE1L. Methods Enzymol. 2005;398:32–40.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao C, Beaudenon SL, Kelley ML, Waddell MB, Yuan W, Schulman BA, et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci U S A. 2004;101(20):7578–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hochrainer K, Mayer H, Baranyi U, Binder B, Lipp J, Kroismayr R. The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects. Genomics. 2005;85(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  75. Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem. 2006;281(7):4334–8.

    Article  CAS  PubMed  Google Scholar 

  76. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE. High-throughput immunoblotting: ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem. 2003;278(19):16608–13.

    Article  CAS  PubMed  Google Scholar 

  77. Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem. 2002;277(12):9976–81.

    Article  CAS  PubMed  Google Scholar 

  78. Malakhova O, Malakhov M, Hetherington C, Zhang DE. Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3. J Biol Chem. 2002;277(17):14703–11.

    Article  CAS  PubMed  Google Scholar 

  79. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 2003;17(4):455–60 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou L, Little MT, Malakhova OA, et al. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 2002;16(17):2207–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Rempel LA, Austin KJ, Ritchie KJ, Yan M, Shen M, Zhang DE, et al. Ubp43 gene expression is required for normal Isg15 expression and fetal development. Reprod Biol Endocrinol. 2007;5:13 (Research Support, N.I.H., Extramural).

    Article  PubMed Central  PubMed  Google Scholar 

  82. Bebington C, Bell SC, Doherty FJ, Fazleabas AT, Fleming SD. Localization of ubiquitin and ubiquitin cross-reactive protein in human and baboon endometrium and decidua during the menstrual cycle and early pregnancy. Biol Reprod. 1999;60(4):920–8.

    Article  CAS  PubMed  Google Scholar 

  83. Bebington C, Doherty FJ, Fleming SD. Ubiquitin cross-reactive protein gene expression is increased in decidualized endometrial stromal cells at the initiation of pregnancy. Mol Hum Reprod. 1999;5(10):966–72.

    Article  CAS  PubMed  Google Scholar 

  84. Fazleabas AT, Kim JJ, Strakova Z. Implantation: embryonic signals and the modulation of the uterine environment—a review. Placenta. 2004;25(Suppl A):S26–31.

    Article  CAS  PubMed  Google Scholar 

  85. Strakova Z, Mavrogianis P, Meng X, Hastings JM, Jackson KS, Cameo P, et al. In vivo infusion of interleukin-1beta and chorionic gonadotropin induces endometrial changes that mimic early pregnancy events in the baboon. Endocrinology. 2005;146(9):4097–104.

    Article  CAS  PubMed  Google Scholar 

  86. Strakova Z, Srisuparp S, Fazleabas AT. Interleukin-1beta induces the expression of insulin-like growth factor binding protein-1 during decidualization in the primate. Endocrinology. 2000;141(12):4664–70.

    CAS  PubMed  Google Scholar 

  87. Strakova Z, Srisuparp S, Fazleabas AT. IL-1beta during in vitro decidualization in primate. J Reprod Immunol. 2002;55(1–2):35–47.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang D, Zhang DE. Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res. 2011;31(1):119–30 (Research Support, N.I.H., Extramural Review).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Knobeloch KP. In vivo functions of isgylation. Subcell Biochem. 2010;54:215–27.

    Article  CAS  PubMed  Google Scholar 

  90. Takeuchi T, Yokosawa H. Detection and analysis of protein ISGylation. Methods Mol Biol. 2008;446:139–49 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  91. Minakawa M, Sone T, Takeuchi T, Yokosawa H. Regulation of the nuclear factor (NF)-kappaB pathway by ISGylation. Biol Pharm Bull. 2008;31(12):2223–7 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  92. Kim MJ, Hwang SY, Imaizumi T, Yoo JY. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol. 2008;82(3):1474–83 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, et al. Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005;336(2):496–506 (Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Traubert Professorship (TH) and grants from the National Institutes of Health, National Institute of Child Health and Development (HD032475 to TH and HD066297 to JP) and Office of the Director (OD010488 to JP), as well as the United States Department of Agriculture National Institute of Food and Agriculture (2011-67015-20067 and 2008-35204-04652) to TH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, T.R., Pru, J.K. (2014). ISGylation: A Conserved Pathway in Mammalian Pregnancy. In: Sutovsky, P. (eds) Posttranslational Protein Modifications in the Reproductive System. Advances in Experimental Medicine and Biology, vol 759. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0817-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0817-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0816-5

  • Online ISBN: 978-1-4939-0817-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics