Skip to main content

Regularity of a Kind of Marginal Functions in Hilbert Spaces

  • Chapter
  • First Online:
Book cover Optimization in Science and Engineering

Abstract

We study well posedness of some mathematical programming problem depending on a parameter that generalizes in a certain sense the metric projection onto a closed nonconvex set. We are interested in regularity of the set of minimizers as well as of the value function, which can be seen, on one hand, as the viscosity solution to a Hamilton–Jacobi equation, while, on the other hand, as the minimal time in some related optimal time control problem. The regularity includes both the Fréchet differentiability of the value function and the Hölder continuity of its (Fréchet) gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  3. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  4. Bernard, F., Thibault, L., Zlateva, N.: Characterizations of prox-regular sets in uniformly convex Banach spaces. J. Convex Anal. 13, 525–559 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Bernard, F., Thibault, L., Zlateva, N.: Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties. Trans. Am. Math. Soc. 363, 2211–2247 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bounkhel, M., Thibault, L.: On various notions of regularity of sets in nonsmooth analysis. Nonlin. Anal. Theory Methods Appl. 48, 223–246 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bressan, A.: Hamilton-Jacobi Equations and Optimal Control. An Illustrated Tutorial. NTNU, Trondheim (2001)

    Google Scholar 

  8. Canino, A.: On p-convex sets and geodesics. J. Differ. Eq. 75, 118–157 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cardaliaguet, P., Dacorogna, B., Gangbo, W., Georgy, N.: Geometric restrictions for the existence of viscosity solutions. Ann. Inst. Henri Poincaré 16, 189–220 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Chong, Li: On well posed generalized best approximation problems. J. Approx. Theory 107, 96–108 (2000)

    Google Scholar 

  11. Chong, Li, Renxing, Ni: Derivatives of generalized distance functions and existence of generalized nearest points. J. Approx. Theory 115, 44–55 (2002)

    Google Scholar 

  12. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  13. Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower-\(\mathcal{C}^{2}\) property. J. Convex Anal. 2, 117–144 (1995)

    Google Scholar 

  14. Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  15. Colombo, G., Goncharov, V.V.: Variational inequalities and regularity properties of closed sets in Hilbert spaces. J. Convex Anal. 8, 197–221 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Colombo, G., Goncharov, V.V., Mordukhovich, B.S.: Well-posedness of minimal time problems with constant dynamics in Banach spaces. Set-Valued Var. Anal. 18, 349–372 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreano, D. (eds.) Handbook on Nonconvex Analysis. International Press, Boston (2010)

    Google Scholar 

  18. Colombo, G., Wolenski, P.R.: Variational analysis for a class of minimal time functions in Hilbert spaces. J. Convex Anal. 11, 335–361 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Dal Maso, G., Goncharov, V.V., Ornelas, A.: A Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient. Nonlin. Anal. Theory Meth. Appl. 37, 707–717 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. De Blasi, F.S., Myjak, J.: On a generalized best approximation problem. J. Approx. Theory 94, 54–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443–474 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ekeland, I., Lebourg, G.: Generic Fréchet differentiability and perturbed optimization problems in Banach spaces. Trans. Am. Math. Soc. 224, 193–216 (1976)

    MathSciNet  Google Scholar 

  23. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  24. Georgiev, P.G.: Submonotone mappings in Banach spaces and applications. Set-Valued Anal. 5, 1–35 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goncharov, V.V., Pereira, F.F.: Neighbourhood retractions of nonconvex sets in a Hilbert space via sublinear functionals. J. Convex Anal. 18, 1–36 (2011)

    MATH  MathSciNet  Google Scholar 

  26. Goncharov, V.V., Pereira, F.F.: Geometric conditions for regularity in a time-minimum problem with constant dynamics. J. Convex Anal. 19, 631–669 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Goncharov, V.V., Pereira, F.F.: Geometric conditions for regularity of viscosity solution to the simplest Hamilton-Jacobi equation. In: Hömberg, D., Tröltzsch, F. (eds.) Proceedings of the 25thIFIP TC7 Conference on System Modeling and Optimization (CSMO 2011), pp. 245–254. Springer, Berlin (2012)

    Google Scholar 

  28. Hiriart-Urruti, J.-B.: Gradients generalises de fonctiones marginales. SIAM J. Contr. Optim. 16, 301–316 (1978)

    Article  Google Scholar 

  29. Ioffe, A.D., Penot, J.-P.: Subdifferentials of performance functions and calculus of coderivatives of set-valued mappings. Serdica Math. J. 22, 359–384 (1996)

    MATH  MathSciNet  Google Scholar 

  30. Kruzhkov, S.N.: Generalized solutions of the Hamilton-Jacobi equation of the Eikonal type. I. Math. USSR Sbornik 27, 406–446 (1975)

    Article  Google Scholar 

  31. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  32. Mordukhovich, B.S., Nam, N.M., Yen, N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Program. Ser. B. 116, 369–396 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ngai, H.V., Penot J.-P.: Approximately convex functions and approximately monotonic operators. Nonlin. Anal. Theory Meth. Appl. 66, 547–564 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math. 32, 257–280 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  37. Shapiro, A.: Existence and differentiability of metric projections in Hilbert spaces. SIAM J. Optim. 4, 130–141 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Thibault, L.: On subdifferentials of optimal value functions. SIAM J. Contr. Optim. 29, 1019–1036 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wolenski, P.R., Zhuang, Yu.: Proximal analysis and the minimal time function. SIAM J. Contr. Optim. 36, 1048–1072 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yiran, He, Kung, Fu Ng: Subdifferentials of a minimum time function in Banach spaces. J. Math. Anal. Appl. 321, 896–910 (2006)

    Google Scholar 

  41. Zajicek, L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Supl. Rend. del Circolo Mat. Palermo, II 3, 403–410 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Work is fulfilled in framework of the project “Variational Analysis: Theory and Applications” (PTDC/MAT/111809/2009) financially supported by Fundação para Ciência e Tecnologia (FCT), the Portuguese institutions COMPETE, QREN and the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Goncharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pereira, F.F., Goncharov, V.V. (2014). Regularity of a Kind of Marginal Functions in Hilbert Spaces. In: Rassias, T., Floudas, C., Butenko, S. (eds) Optimization in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0808-0_22

Download citation

Publish with us

Policies and ethics