Skip to main content

Designing Groundwater Supply Systems Using the Mesh Adaptive Basin Hopping Algorithm

  • Chapter
  • First Online:
Optimization in Science and Engineering

Abstract

Designing groundwater systems is a challenging problem in industrial engineering, where pumping wells have to be located in an optimal location to minimize the cost of installation and maintenance. Groundwater flows are studied using simulators, which makes difficult to standard optimization methods to find satisfactory results, since approximating the gradient is not accurate and computationally expensive. We tackle the problem using the Mesh Adaptive Basin Hopping approach, which combines a heuristic search step with a derivative-free local optimizer. We apply our method to two design problems in the ground-water supply field; the method is able to outperform the state-of-the-art algorithms, providing better solutions with a tight budget of objective function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson, M.A., Audet, C.: Convergence of mesh adaptive direct search to second-order stationary points. SIAM J. Optim. 17(2), 606–619 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abramson, M.A., Audet, C., Dennis, J.E., Jr., Le Digabel, S.: Orthomads: a deterministic mads instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Audet, C., Dennis, J.E., Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2005, vol. 2, pp. 1769–1776. IEEE, Piscataway (2005)

    Google Scholar 

  5. Bertsekas, D.: On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Autom. Control 21(2), 174–184 (2002)

    Article  MathSciNet  Google Scholar 

  6. Choi, T.D., Eslinger, O.J., Gilmore, P., Patrick, A., Kelley, C.T., Gablonsky, J.M.: IFFCO: implicit filtering for constrained optimization, version 2. Technical Report, Center for Research in Scientific Computation, North Carolina State University, Raleigh (1999)

    Google Scholar 

  7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. Society for Industrial Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Fowler, K.R., Kelley, C.T., Kees, C.E., Miller, C.T.: A hydraulic capture application for optimal remediation design. Dev. Water Sci. 55, 1149–1157 (2004)

    Article  Google Scholar 

  10. Fowler, K.R., Kelley, C.T., Miller, C.T., Kees, C.E., Darwin, R.W., Reese, J.P., Farthing, M.W., Reed, M.S.C.: Solution of a well-field design problem with implicit filtering. Optim. Eng. 5(2), 207–234 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fowler, K.R., Reese, J.P., Kees, C.E., Dennis, J.E., Jr., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W.: Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31(5), 743–757 (2008)

    Article  Google Scholar 

  12. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim. 5, 269 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  14. Harbaugh, A.W., McDonald, M.G.: User’s documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model. US Department of the Interior, US Geological Survey (1996)

    Google Scholar 

  15. Hemker, T., Fowler, K.R., von Stryk, O.: Derivative-free optimization methods for handling fixed costs in optimal groundwater remediation design. In: Proceedings of the CMWR XVI-Computational Methods in Water Resources, pp. 19–22. Citeseer (2006)

    Google Scholar 

  16. Hemker, T., Fowler, K.R., Farthing, M.W., von Stryk, O.: A mixed-integer simulation-based optimization approach with surrogate functions in water resources management. Optim. Eng. 9(4), 341–360 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge (1992)

    Google Scholar 

  18. Lewis, R.M., Torczon, V.: Pattern search algorithms for linearly constrained minimization. SIAM J. Optim. 10(3), 917–941 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pardalos, P.M., Schoen, F.: Recent advances and trends in global optimization: deterministic and stochastic methods. In: Proceedings of the Sixth International Conference on Foundations of Computer-Aided Process Design (2004)

    Google Scholar 

  20. Price, K.V.: Differential evolution. In: Handbook of Optimization, pp. 187–214. Springer, New York (2013)

    Google Scholar 

  21. Storn, R., Price., K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Google Scholar 

  22. Stracquadanio, G., La Ferla, A., De Felice, M., Nicosia, G.: Design of robust space trajectories. In: Research and Development in Intelligent Systems XXVIII, pp. 341–354. Springer, New York (2011)

    Google Scholar 

  23. Stracquadanio, G., Pappalardo, E., Pardalos, P.M.: A mesh adaptive basin hopping method for the design of circular antenna arrays. J. Optim. Theory Appl. 155(3), 1008–1024 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Stracquadanio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pappalardo, E., Stracquadanio, G. (2014). Designing Groundwater Supply Systems Using the Mesh Adaptive Basin Hopping Algorithm. In: Rassias, T., Floudas, C., Butenko, S. (eds) Optimization in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0808-0_21

Download citation

Publish with us

Policies and ethics