Skip to main content

Attitude Control

  • Chapter

Part of the book series: Space Technology Library ((SPTL,volume 33))

Abstract

Spacecraft attitude control is essential to meet mission pointing requirements, such as required science modes and thruster pointing requirements for orbital maneuvers. Early spacecraft mission designs used passive spin stabilization to hold one axis relatively fixed by spinning the spacecraft around that axis, usually the axis of maximum moment of inertia. Spin stabilization was mostly used due to the limited control actuation and lack of sophisticated computer technology to implement complex control laws. Spin-stabilized spacecraft are very stable, but they have to be sensitively balanced; every component has to be designed and located with spacecraft balance in mind. This can be extremely difficult to accomplish to the required accuracy. In most cases the last few weights are added and adjusted only after actual flight hardware is delivered and installed, and the spacecraft is experimentally spin tested. Allowances must also be made for everything onboard that can move during flight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Sect. 11.1.

  2. 2.

    This has no relation to the orbit plane because SAMPEX is not Earth-pointing.

  3. 3.

    This is equal to 0.6 ft-lb-s and has been erroneously given as 0.6 Nms in the literature.

References

  1. Agrawal, B.N., McClelland, R.S., Song, G.: Attitude control of flexible spacecraft using pulse-width pulse-frequency modulated thrusters. Space Tech. 17(1), 15–34 (1997)

    Article  Google Scholar 

  2. Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  3. Andrews, S.F., Campbell, C.E., Ericsson-Jackson, A.J., Markley, F.L., O’Donnell Jr., J.R.: MAP attitude control system design and analysis. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 445–456. NASA-Goddard Space Flight Center, Greenbelt (1997)

    Google Scholar 

  4. Arantes, G., Martins-Filho, L.S., Santana, A.C.: Optimal on-off attitude control for the Brazilian Multimission Platform satellite. Math. Probl. Eng. 2009(1) (2009)

    Article  Google Scholar 

  5. Åström, K.J.: Introduction to Stochastic Control Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  6. Avanzini, G., Giulietti, F.: Magnetic detumbling of a rigid spacecraft. J. Guid. Contr. Dynam. 35(4), 1326–1334 (2012)

    Article  Google Scholar 

  7. Bhat, S.P., Dham, A.S.: Controllability of spacecraft attitude under magnetic actuation. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 2383–2388. Maui (2003)

    Google Scholar 

  8. Camillo, P.J., Markley, F.L.: Orbit-averaged behavior of magnetic control laws for momentum unloading. J. Guid. Contr. 3(6), 563–568 (1980)

    Article  Google Scholar 

  9. Challa, M.S., Natanson, G.A., Baker, D.E., Deutschmann, J.K.: Advantages of estimating rate corrections during dynamic propagation of spacecraft rates-applications to real-time attitude determination of SAMPEX. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 481–495. NASA-Goddard Space Flight Center, Greenbelt (1994)

    Google Scholar 

  10. Chen, L.C., Lerner, G.M.: Three-axis attitude determination. In: Wertz, J.R. (ed.) Sun Sensor Models, chap. 7. Kluwer Academic, Dordrecht (1978)

    Google Scholar 

  11. Chu, D., Harvie, E.: Accuracy of the ERBS definitive attitude determination system in the presence of propagation noise. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 97–114. NASA-Goddard Space Flight Center, Greenbelt (1990)

    Google Scholar 

  12. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  13. Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Contr. Dynam. 19(6), 1381–1383 (1996)

    Article  Google Scholar 

  14. Crassidis, J.L., Markley, F.L.: Predictive filtering for attitude estimation without rate sensors. J. Guid. Contr. Dynam. 20(3), 522–527 (1997)

    Article  Google Scholar 

  15. Crassidis, J.L., Vadali, S.R., Markley, F.L.: Optimal variable-structure control tracking of spacecraft maneuvers. J. Guid. Contr. Dynam. 23(3), 564–566 (2000)

    Article  Google Scholar 

  16. Davis, M.: Linear Estimation and Stochastic Control. Chapman and Hall, London (1977)

    MATH  Google Scholar 

  17. Dorf, R.C., Bishop, R.H.: Modern Control Systems. Addison Wesley Longman, Menlo Park (1998)

    Google Scholar 

  18. Dwyer, T.A.W., Sira-Ramirez, H.: Variable structure control of spacecraft reorientation maneuvers. J. Guid. Contr. Dynam. 11(3), 262–270 (1988)

    Article  Google Scholar 

  19. Flatley, T.W., Forden, J.K., Henretty, D.A., Lightsey, E.G., Markley, F.L.: On-board attitude determination and control algorithms for SAMPEX. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 379–398. NASA-Goddard Space Flight Center, Greenbelt (1990)

    Google Scholar 

  20. Frakes, J.P., Henretty, D.A., Flatley, T.W., Markley, F.L., Forden, J.K., Lightsey, E.G.: SAMPEX science pointing modes with velocity avoidance. In: Proceedings of the 2nd AAS/AIAA Spaceflight Mechanics Meeting, pp. 949–966. Colorado Springs (1992)

    Google Scholar 

  21. Junkins, J.L., Turner, J.D.: Optimal Spacecraft Rotational Maneuvers. Elsevier, New York (1986)

    MATH  Google Scholar 

  22. Kang, W.: Nonlinear H control and its application to rigid spacecraft. IEEE Trans. Automat. Contr. 40(7), 1281–1285 (1995)

    Article  MathSciNet  Google Scholar 

  23. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, The Three-Body Problem and Space Mission Design. Marsden Books, Pasadena (2011)

    Google Scholar 

  24. Krøvel, T.D.: Optimal tuning of PWPF modulator for attitude control. Master’s thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, Trondheim (2005)

    Google Scholar 

  25. Lizarralde, F., Wen, J.T.Y.: Attitude control without angular velocity measurement: A passivity approach. IEEE Trans. Automat. Contr. 41(3), 468–472 (1996)

    Article  MathSciNet  Google Scholar 

  26. Lovera, M.: Optimal magnetic momentum control for inertially pointing spacecraft. Eur. J. Contr. 7(1), 30–39 (2001)

    Article  Google Scholar 

  27. Markley, F.L., Andrews, S.F., O’Donnell Jr., J.R., Ward, D.K.: Attitude control system of the Wilkinson Microwave Anisotropy Probe. J. Guid. Contr. Dynam. 28(3), 385–397 (2005)

    Article  Google Scholar 

  28. Markley, F.L., Flatley, T.W., Leoutsakos, T.: SAMPEX special pointing mode. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 201–215. NASA-Goddard Space Flight Center, Greenbelt (1995)

    Google Scholar 

  29. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback. In: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 2522–2527. Shanghai (2009)

    Google Scholar 

  30. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. Automat. Contr. AC-56(11), 2555–2566 (2011)

    Article  MathSciNet  Google Scholar 

  31. McCullough, J.D., Flatley, T.W., Henretty, D.A., Markley, F.L., San, J.K.: Testing of the on-board attitude determination and control algorithms for SAMPEX. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 55–68. NASA-Goddard Space Flight Center, Greenbelt (1992)

    Google Scholar 

  32. Paielli, R.A., Bach, R.E.: Attitude control with realization of linear error dynamics. J. Guid. Contr. Dynam. 16(1), 182–189 (1993)

    Article  Google Scholar 

  33. Sanfelice, R.G., Messina, M.J., Tuna, S.E., Teel, A.R.: Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points. In: American Control Conference, pp. 3352–3357. Minneapolis (2006)

    Google Scholar 

  34. Sanyal, A., Fosbury, A., Chaturvedi, N., Bernstein, D.S.: Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization. J. Guid. Contr. Dynam. 32(4), 1167–1178 (2009)

    Article  Google Scholar 

  35. Schaub, H., Akella, M.R., Junkins, J.L.: Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J. Guid. Contr. Dynam. 24(1), 95–100 (2001)

    Article  Google Scholar 

  36. Schaub, H., Junkins, J.L.: Analytical Mechanics of Aerospace Systems, 2nd edn. American Institute of Aeronautics and Astronautics, New York (2009)

    MATH  Google Scholar 

  37. Scrivener, S.L., Thompson, R.C.: Survey of time-optimal attitude maneuvers. J. Guid. Contr. Dynam. 17(2), 225–233 (1994)

    Article  Google Scholar 

  38. Shuster, M.D., Dellinger, W.F.: Spacecraft attitude determination and control. In: V.L. Pisacane (ed.) Fundamentals of Space Systems, 2nd edn., chap. 5. Oxford University Press, New York (2005)

    Google Scholar 

  39. Sidi, M.J.: Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, New York (2006)

    Google Scholar 

  40. Silani, E., Lovera, M.: Magnetic spacecraft attitude control: A survey and some new results. Contr. Eng. Pract. 13(3), 357–371 (2005)

    Article  Google Scholar 

  41. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  42. Stengel, R.F.: Optimal Control and Estimation. Dover Publications, New York (1994)

    MATH  Google Scholar 

  43. Stickler, A.C., Alfriend, K.T.: Elementary magnetic attitude control system. J. Spacecraft Rockets 13(5), 282–287 (1976)

    Article  Google Scholar 

  44. Tsai, D.C., Markley, F.L., Watson, T.P.: SAMPEX spin stabilized mode. In: SpaceOps Conference. Heidelberg, Germany (2008). AIAA 2008–3435

    Google Scholar 

  45. Tsiotras, P.: Stabilization and optimality results for the attitude control problem. J. Guid. Contr. Dynam. 19(4), 772–779 (1996)

    Article  Google Scholar 

  46. Vadali, S.R.: Variable structure control of spacecraft large angle maneuvers. J. Guid. Contr. Dynam. 9(2), 235–239 (1986)

    Article  Google Scholar 

  47. Vadali, S.R., Junkins, J.L.: Optimal open-loop and stable feedback control of rigid spacecraft maneuvers. J. Astronaut. Sci. 32(2), 105–122 (1984)

    Google Scholar 

  48. White, J.S., Shigemoto, F.H., Bourquin, K.: Satellite attitude control utilizing the Earth’s magnetic field. Tech. Rep. NASA-TN-D-1068, A-474, NASA Ames Research Center, Moffett Field (1961)

    Google Scholar 

  49. Wie, B.: Space Vehicle Dynamics and Control, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2008)

    Google Scholar 

  50. Wie, B., Barba, P.M.: Quaternion feedback for spacecraft large angle maneuvers. J. Guid. Contr. Dynam. 8(3), 360–365 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markley, F.L., Crassidis, J.L. (2014). Attitude Control. In: Fundamentals of Spacecraft Attitude Determination and Control. Space Technology Library, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0802-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0802-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0801-1

  • Online ISBN: 978-1-4939-0802-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics