Chiral Polytopes and Suzuki Simple Groups

  • Isabel Hubard
  • Dimitri LeemansEmail author
Part of the Fields Institute Communications book series (FIC, volume 70)


For each q ≠ 2 an odd power of 2, we show that the Suzuki simple group S = Sz(q) is the automorphism group of considerably more chiral polyhedra than regular polyhedra. Furthermore, we show that S cannot be the automorphism group of an abstract chiral polytope of rank greater than 4. For each almost simple group G such that S < GAut(S), we prove that G is not the automorphism group of an abstract chiral polytope of rank greater than 3, and produce examples of chiral 3-polytopes for each such group G.


Abstract chiral polytopes Suzuki simple groups 

Subject Classifications

52B11 20D06 



We would like to thank the Fields Institute for the support we received during the Discrete Geometry and Applications Thematic Program, part of this work was done when the authors visited the Institute. We also gratefully acknowledge financial support of “PAPIIT – México (Grant IN106811)” the “Fonds David et Alice Van Buuren” and the “Communauté Française de Belgique – Action de Recherche Concertée” for this project. Finally, we thank the referee for the careful reading of our paper and the suggestions to improve this paper.


  1. 1.
    Bosma, W., Cannon, C., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brooksbank, P.A., Vicinsky, D.A.: Three-dimensional classical groups acting on polytopes. Discret. Comput. Geom. 44(3), 654–659 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Conder, M.D.E.: Generators for alternating and symmetric groups. J. Lond. Math. Soc. (2), 22(1), 75–86 (1980)Google Scholar
  4. 4.
    Conder, M.D.E.: More on generators for alternating and symmetric groups. Quart. J. Math. Oxf. Ser. (2), 32(126), 137–163 (1981)Google Scholar
  5. 5.
    Conder, M.D.E.: The symmetric genus of the Mathieu groups. Bull. Lond. Math. Soc. 23, 445–453 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Conder, M.D.E.: Conder’s webpage.
  7. 7.
    Conder, M.D.E., Potočnik, P., Širáň, J.: Regular hypermaps over projective linear groups. J. Aust. Math. Soc. 85(2), 155–175 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Conder, M.D.E., Hubard, I., O’Reilly, E., Pellicer, D.: Rank 4 chiral polytopes with alternating and symmetric groups (in preparation)Google Scholar
  9. 9.
    Conder, M.D.E., Hubard, I., O’Reilly, E., Pellicer, D.: A construction for higher rank chiral polytopes with symmetric or alternating groups (in preparation)Google Scholar
  10. 10.
    Fernandes, M.-E., Leemans, D.: Polytopes of high rank for the symmetric groups. Adv. Math. 228, 3207–3222 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fernandes, M.-E., Leemans, D., Mixer, M.: All alternating groups a n with n ≥ 12 have polytopes of rank \(\lfloor \frac{n-1} {2} \rfloor \). SIAM J. Discret. Math. 26(2), 482–498 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fernandes, M.-E., Leemans, D., Mixer, M.: Polytopes of high rank for the alternating groups. J. Comb. Theory Ser. A 119, 42–56 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hartley, M.I.: An atlas of small regular abstract polytopes. Period. Math. Hung. 53(1–2), 149–156 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hartley, M.I., Hulpke, A.: Polytopes derived from sporadic simple groups. Contrib. Discret. Math. 5(2), 106–118 (2010)MathSciNetGoogle Scholar
  15. 15.
    Hartely, M.I., Hubard, I., Leemans, D.: Two Atlases of chiral polytopes for small groups. Ars Math. Contemp. 5(2), 371–382 (2012)MathSciNetGoogle Scholar
  16. 16.
    Hubard, I., Schulte, E., Weiss, A.I.: Petrie-Coxeter maps revisited. Beitr. Algebr. Geom. 47(2), 329–343 (2006)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Jones, G.A.: Ree groups and Riemann surfaces. J. Algebr. 165(1), 41–62 (1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jones, G.A., Silver, S.A.: Suzuki groups and surfaces. J. Lond. Math. Soc. (2), 48(1), 117–125 (1993)Google Scholar
  19. 19.
    Kiefer, A., Leemans, D.: On the number of abstract regular polytopes whose automorphism group is a Suzuki simple group Sz(q). J. Comb. Theory Ser. A 117(8), 1248–1257 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Leemans, D.: Almost simple groups of Suzuki type acting on polytopes. Proc. Am. Math. Soc. 134, 3649–3651 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Leemans, D., Mixer, M.: Algorithms for classifying regular polytopes with a fixed automorphism group. Contrib. Discret. Math. 7(2), 105–118 (2012)MathSciNetGoogle Scholar
  22. 22.
    Leemans, D., Schulte, E.: Groups of type PSL(2, q) acting on polytopes. Adv. Geom. 7, 529–539 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Leemans, D., Schulte, E.: Polytopes with groups of type PGL(2, q). Ars Math. Contemp. 2, 163–171 (2009)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Leemans, D., Vauthier, L.: An atlas of abstract regular polytopes for small groups. Aequ. Math. 72, 313–320 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Mazurov, V.D. (ed.): Kourovskaya tetrad: nereshennye zadachi teorii grupp. In: Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 7th edn. (1980). Including Problems from the Seventh All-Union Symposium on the Group Theory, Shushenskoe (1980)Google Scholar
  26. 26.
    Mazurov, V.D., Khukhro, E.I.: The Kourovka Notebook. Unsolved Problems in Group Theory. Institute of Mathematics, Russian Academy of Sciences, Siberian Division, Novosibirsk (2002)Google Scholar
  27. 27.
    McMullen, P., Schulte, E.: Abstract Regular Polytopes. Volume 92 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2002)Google Scholar
  28. 28.
    Moore, E.H.: Concerning the abstract groups of order k! and \(\frac{1} {2}k!\). Proc. Lond. Math. Soc. 28, 357–366 (1896)CrossRefGoogle Scholar
  29. 29.
    Nuzhin, Ya.N.: Generating triples of involutions of Lie-type groups over a finite field of odd characteristic. II. Algebra i Logika 36(4), 422–440, 479 (1997)Google Scholar
  30. 30.
    Schulte, E., Weiss, A.I.: Chiral polytopes. In: Gritzmann, P., Sturmfels, B., Klee, V. (eds.) Applied Geometry and Discrete Mathematics (The Victor Klee Festschrift). DIMACS Series in Discrete Matematics and Theoretical Computer Science, vol. 4, pp. 493–516. American Mathematical Society, Providence/Association for Computing Machinery, Baltimore (1991)Google Scholar
  31. 31.
    Schulte, E., Weiss, A.I.: Chirality and projective linear groups. Discret. Math. 131, 221–261 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Sjerve, D., Cherkassoff, M.: On groups generated by three involutions, two of which commute. In: The Hilton Symposium 1993, Montreal. Volume 6 of CRM Proceedings Lecture Notes, pp. 169–185. American Mathematical Society, Providence (1994)Google Scholar
  33. 33.
    Suzuki, M.: On a class of doubly transitive groups. Ann. Math. (2) 75, 105–145 (1962)Google Scholar
  34. 34.
    Tits, J.: Ovoïdes et groupes de Suzuki. Arch. Math. 13, 187–198 (1962)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMexico City D.F.México
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations