Advertisement

Geometric Constructions for Symmetric 6-Configurations

  • Leah Wrenn BermanEmail author
Chapter
  • 743 Downloads
Part of the Fields Institute Communications book series (FIC, volume 70)

Abstract

A geometric k-configuration is a collection of points and lines, typically in the Euclidean plane, with k points on each line, k lines passing through each point, and non-trivial geometric symmetry; that is, it is a (n k ). configuration for some number n of points and lines. We say a k-configuration is symmetric if it has non-trivial geometric symmetry. While 3-configurations have been studied since the mid-1800s, and 4-configurations have been studied since 1990, little is known about more highly incident configurations, such as 5- or 6-configurations. This article surveys several known geometric construction techniques that produce highly symmetric 6-configurations.

Keywords

Configurations Incidence geometry 

Subject Classifications

51E30 05E30 

Notes

Acknowledgements

The author thanks Jill Faudree, University of Alaska Fairbanks, for many helpful discussions, and the anonymous referee for useful comments. As always, the author thanks Branko Grünbaum for inspiration.

References

  1. 1.
    Berardinelli, A., Berman, L.W.: Systematic celestial configurations. Ars Math. Contemp., 7(2), (2014)Google Scholar
  2. 2.
    Berman, L.W.: A characterization of astral (n 4) configurations. Discret. Comput. Geom. 26(4), 603–612 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Berman, L.W.: Even astral configurations. Electron. J. Comb. 11(1), Research Paper 37, 23 (2004). (electronic)Google Scholar
  4. 4.
    Berman, L.W.: Movable (n 4) configurations. Electron. J. Comb. 13(1), Research Paper 104, 30 (2006). (electronic)Google Scholar
  5. 5.
    Berman, L.W.: Some results on odd astral configurations. Electron. J. Comb. 13(1), Research Paper 27, 31 (2006). (electronic)Google Scholar
  6. 6.
    Berman, L.W.: Constructing highly incident configurations. Discret. Comput. Geom. 46(3), 447–470 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Berman, L.W.: Erratum to: constructing highly incident configurations. Discret. Comput. Geom. 46(3), 471 (2011)CrossRefGoogle Scholar
  8. 8.
    Berman, L.W., Bokowski, J.: Linear astral (n 5) configurations with dihedral symmetry. Eur. J. Comb. 29(8), 1831–1842 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Berman, L.W., Bokowski, J., Grünbaum, B., Pisanski, T.: Geometric “floral” configurations. Can. Math. Bull. 52(3), 327–341 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Berman, L.W., Burtt, N.A.: A new construction for symmetric (4, 6)-configurations. Ars Math. Contemp. 3(2), 165–175 (2010)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Berman, L.W., Faudree, J. R.: Highly incident configurations with chiral symmetry. Discrete & Computational Geometry, 49(3):671–694 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Berman, L.W., Grünbaum, B.: Deletion constructions of symmetric 4-configurations. Part I. Contrib. Discret. Math. 5(1), 18–33 (2010)zbMATHGoogle Scholar
  13. 13.
    Berman, L.W., Ng, L.: Constructing 5-configurations with chiral symmetry. Electron. J. Comb. 17(1), Research Paper 2, 14 (2010)Google Scholar
  14. 14.
    Betten, A., Brinkmann, G., Pisanski, T.: Counting symmetric configurations v 3. In: Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization, Enschede, 1997, vol. 99, pp. 331–338 (2000)Google Scholar
  15. 15.
    Boben, M., Pisanski, T.: Polycyclic configurations. Eur. J. Comb. 24(4), 431–457 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Grünbaum, B.: Astral (n 4) configurations. Geombinatorics 9(3), 127–134 (2000)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Grünbaum, B.: Musings on an example of Danzer’s. Eur. J. Comb. 29(8), 1910–1918 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Grünbaum, B.: Configurations of Points and Lines. Volume 103 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2009)Google Scholar
  19. 19.
    Grünbaum, B., Rigby, J.F.: The real configuration (214). J. Lond. Math. Soc. 41(2), 336–346 (1990)CrossRefzbMATHGoogle Scholar
  20. 20.
    Marušič, D., Pisanski, T.: Weakly flag-transitive configurations and half-arc-transitive graphs. Eur. J. Comb. 20(6), 559–570 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of Alaska FairbanksFairbanksUSA

Personalised recommendations