Local, Dimensional and Universal Rigidities: A Unified Gram Matrix Approach

  • A. Y. AlfakihEmail author
Part of the Fields Institute Communications book series (FIC, volume 70)


This chapter is a unified treatment, based on projected Gram matrices (PGMs), of the problems of local, dimensional, and universal rigidities of bar frameworks. This PGM-based approach makes these problems amenable to semidefinite programming methodology; and naturally gives rise to results expressed in terms of Gale matrices. We survey known results emphasizing numerical examples and proofs which highlight the salient aspects of this approach.


Bar-and-joint frameworks Infinitesimal rigidity Rigidity matrix Dual rigidity matrix Dimensional rigidity Universal rigidity Gram matrix and Gale transform 

Subject Classifications

52C25 05C50 15A57 



Research supported by the Natural Sciences and Engineering Research Council of Canada.The author would like to thank an anonymous referee for his/her remarks which improved the presentation of this chapter.


  1. 1.
    Alfakih, A.Y.: On dimensional rigidity of bar-and-joint frameworks. Discret. Appl. Math. 155, 1244–1253 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alfakih, A.Y.: On the dual rigidity matrix. Linear Algebra Appl. 428, 962–972 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alfakih, A.Y.: On the universal rigidity of generic bar frameworks. Contrib. Discret. Math. 5, 7–17 (2010)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Alfakih, A.Y.: On bar frameworks, stress matrices and semidefinite programming. Math. Program. Ser. B 129, 113–128 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Alfakih, A.Y., Taheri, N., Ye, Y.: On stress matrices of (d+1)-lateration frameworks in general position. Math. Program. 137, 1–17 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Alfakih, A.Y., Ye, Y.: On affine motions and bar frameworks in general positions. Linear Algebra Appl. 438, 31–36 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Alizadeh, F., Haeberly, J.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Asimow, L., Roth, B.: The rigidity of graphs II. J. Math. Anal. Appl. 68, 171–190 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Connelly, R.: Rigidity and energy. Invent. Math. 66, 11–33 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Connelly, R.: Rigidity. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 223–271. North-Holland, Amsterdam/New York (1993)CrossRefGoogle Scholar
  13. 13.
    Connelly, R.: Tensegrity structures: why are they stable? In: Thorpe, M.F., Duxbury, P.M. (eds.) Rigidity Theory and Applications, pp. 47–54. Kluwer Academic/Plenum Publishers, New York (1999)Google Scholar
  14. 14.
    Connelly, R.: Generic global rigidity. Discret. Comput. Geom. 33, 549–563 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)zbMATHGoogle Scholar
  16. 16.
    Gale, D.: Neighboring vertices on a convex polyhedron. In: Kuhn, H.W., Tucker, A.W., Dantzig, G.B. (eds.) Linear Inequalities and Related System, pp. 255–263. Princeton University Press, Princeton (1956)Google Scholar
  17. 17.
    Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Proceedings of the Geometric Topology Conference, Park City, 1974. Volume 438 of Lecture Notes in Mathematics, pp. 225–239. Springer, Berlin (1975)Google Scholar
  18. 18.
    Gortler, S.J., Healy, A.D., Thurston, D.P.: Characterizing generic global rigidity (2007). arXiv/0710.0926v4Google Scholar
  19. 19.
    Gortler, S.J., Thurston, D.P.: Characterizing the universal rigidity of generic frameworks (2009). arXiv/1001.0172v1Google Scholar
  20. 20.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2. American Mathematical Society, Providence (1993)Google Scholar
  21. 21.
    Grünbaum, B.: Convex Polytopes. Wiley, London/New York (1967)zbMATHGoogle Scholar
  22. 22.
    Whiteley, W.: Matroids and rigid structures. In: White, N. (ed.) Matroid Applications. Encyclopedia of Mathematics and its Applications, vol. 40, pp. 1–53. Cambridge University Press, Cambridge/New York (1992)Google Scholar
  23. 23.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Theory, Algorithms and Applications. Kluwer Academic, Boston (2000)Google Scholar
  24. 24.
    Zhu, Z., So, A.M-C., Ye, Y.: Universal rigidity: towards accurate and efficient localization of wireless networks. In: Proceedings of IEEE INFOCOM, San Diego (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations