Buildings and s-Transitive Graphs

  • Richard M. WeissEmail author
Part of the Fields Institute Communications book series (FIC, volume 70)


A graph is s-transitive if its automorphism group acts transitively on the set of paths of length s. This is a notion due to William Tutte who showed in 1947 that a finite trivalent graph can never be 6-transitive. We examine connections between the theory of s-transitive graphs and the classification of Moufang polygons, a class of graphs exhibiting “local” s-transitivity for large values of s. Moufang polygons are examples of buildings. Both of these notions were introduced by Jacques Tits in the study of algebraic groups. We give an overview of Tits’ classification results in the theory of spherical buildings (which include the classification of Moufang polygons as a special case) and describe, in particular, the classification of finite buildings.


Building s-transitive graph Moufang polygon 

Subject Classifications

20E42 51E24 


  1. 1.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local, I, Données radicielles valuées. Publ. Math. I.H.E.S. 41, 5–252 (1972)Google Scholar
  2. 2.
    Delgado, A., Stellmacher, B.: Weak (B, N)-pairs of rank 2. In: Groups and Graphs: New Results and Methods. Birkhäuser, Basel (1985)Google Scholar
  3. 3.
    De Medts, T., Segev, Y.: A course on Moufang sets. Innov. Incid. Geom. 9, 79–122 (2009)zbMATHGoogle Scholar
  4. 4.
    Gardiner, A.: Arc transitivity in graphs. Q. J. Math. Oxford 24, 399–407 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ronan, M.: Lectures on Buildings. Academic, Boston (1989)zbMATHGoogle Scholar
  6. 6.
    Sims, C.C.: Graphs and finite permutation groups. Math. Z. 95, 76–86 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Tits, J.: Sur la trialité et certains groupes qui s’en déduisent. Publ. Math. I.H.E.S. 2, 14–60 (1959)Google Scholar
  8. 8.
    Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics, vol. 386. Springer, Heidelberg (1974)Google Scholar
  9. 9.
    Tits, J.: Non-existence de certains polygones généralisés, I-II. Invent. Math. 36, 275–284 (1976) and 51, 267–269 (1979)Google Scholar
  10. 10.
    Tits, J.: A local approach to buildings. In: Davis, C., Grünbaum, B., Sherk, F.A. (eds.) The Geometric Vein: The Coxeter Festschrift, pp. 519–547. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  11. 11.
    Tits, J.: Immeubles de type affine. In: Rosati, L.A. (ed.) Buildings and the Geometry of Diagrams. Lecture Notes in Mathematics, vol. 1181, pp. 159–190. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  12. 12.
    Tits, J., Weiss, R.M.: Moufang Polygons. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Tutte, W.T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43, 621–624 (1947)Google Scholar
  14. 14.
    Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)zbMATHGoogle Scholar
  15. 15.
    Weiss, R.M.: Elations of graphs. Acta Math. Acad. Sci. Hung. 34, 101–103 (1979)CrossRefzbMATHGoogle Scholar
  16. 16.
    Weiss, R.M.: Groups with a (B, N)-pair and locally transitive graphs. Nagoya J. Math. 74, 1–21 (1979)zbMATHGoogle Scholar
  17. 17.
    Weiss, R.M.: The nonexistence of certain Moufang polygons. Invent. Math. 51, 261–266 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Weiss, R.M.: The nonexistence of 8-transitive graphs. Combinatorica 1, 309–311 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Weiss, R.M.: The Structure of Spherical Buildings. Princeton University Press, Princeton (2003)Google Scholar
  20. 20.
    Weiss, R.M.: The Structure of Affine Buildings. Princeton University Press, Princeton (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA

Personalised recommendations