One Brick at a Time: A Survey of Inductive Constructions in Rigidity Theory

  • A. NixonEmail author
  • E. Ross
Part of the Fields Institute Communications book series (FIC, volume 70)


We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. As the survey progresses we describe the key open problems related to inductions.


Rigidity Bar-joint framework Inductive construction 

Subject Classifications



  1. 1.
    Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berg, A.R., Jordán, T.: A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Combin. Theory B 88(1), 77–97 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Borcea, C., Streinu, I.: The number of embeddings of minimally rigid graphs. Discret. Comput. Geom. 31(2), 287–303 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Borcea, C., Streinu, I.: Minimally rigid periodic graphs. Bull. Lond. Math. Soc. 43, 1093–1103 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Borcea, C.S., Streinu, I.: Periodic frameworks and flexibility. Proc. R. Soc. A 466(2121), 2633–2649 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Borcea, C.S., Streinu, I., Tanigawa, S.-I.: Periodic body-and-bar frameworks. In: Proceedings of the 2012 Symposium on Computational Geometry, SoCG’12, Chapel Hill, pp. 347–356. ACM, New York (2012)Google Scholar
  7. 7.
    Cheung, M., Whiteley, W.: Transfer of global rigidity results among dimensions: graph powers and coning (2008, preprint)Google Scholar
  8. 8.
    Connelly, R.: Generic global rigidity. Discret. Comput. Geom. 33(4), 549–563 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Connelly, R., Jordán, T., Whiteley, W.: Generic global rigidity of body-bar frameworks J. Combin. Theory Ser. B 103(6), 689–705 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fekete, Z., Szegő, L.: A note on [k, l]-sparse graphs. In: Graph Theory, pp. 169–177. Birkhäuser, Cambridge (2006)Google Scholar
  11. 11.
    Finbow, W., Whiteley, W.: Isostatic block and hole frameworks. SIAM J. Discret. Math. 27(2), 991–1020 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Frank, A., Szegő, L.: Constructive characterizations for packing and covering with trees. Discret. Appl. Math. 131(2), 347–371 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Volume 2 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1993)Google Scholar
  14. 14.
    Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. Comput. Geom. Theory Appl. 31(1–2), 63–100 (2005)MathSciNetGoogle Scholar
  15. 15.
    Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Henneberg, L.: Die Graphische der Starren Systeme. B.G. Teubner, Leipzig (1911)zbMATHGoogle Scholar
  17. 17.
    Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Combin. Theory B 94(1), 1–29 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jackson, B., Jordán, T.: Graph Theoretic Techniques in the Analysis of Uniquely Localizable Sensor Networks. In: Mao,G., Fidanm, B. (eds.), Localization Algorithms and Strategies for Wireless Sensor Networks, pp. 145–173. IGI Global (2009)Google Scholar
  19. 19.
    Jackson, B., Jordán, T.: Globally rigid circuits of the direction-length rigidity matroid. J. Combin. Theory B 100(1), 1–22 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Jackson, B., Owen, J.: The number of equivalent realisations of a rigid graph. arXiv:1204.1228 (2012, preprint)Google Scholar
  21. 21.
    Jackson, B., Jordán, T., Szabadka, Z.: Globally linked pairs of vertices in equivalent realizations of graphs. Discret. Comput. Geom. 35(3), 493–512 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Jordán, T., Szabadka, Z.: Operations preserving the global rigidity of graphs and frameworks in the plane. Comput. Geom. 42(6–7), 511–521 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Jordán, T., Kaszanitsky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane EGRES technical report TR-2012-17 (2012)Google Scholar
  24. 24.
    Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. Discret. Comput. Geom. 45(4), 647–700 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4:331–340 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discret. Math. 308(8), 1425–1437 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Malestein, J., Theran, L.: Generic rigidity of frameworks with orientation-preserving crystallographic symmetry. arXiv:1108.2518 (2011)Google Scholar
  28. 28.
    Malestein, J., Theran, L.: Frameworks with forced symmetry i: reflections and rotations. arxXiv:1304.0398 (2012, preprint)Google Scholar
  29. 29.
    Malestein, J., Theran, L.: Generic combinatorial rigidity of periodic frameworks. Adv. Math. 233, 291–331 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Maxwell, J.C.: On the claculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864)Google Scholar
  31. 31.
    Nash-Williams, C.S.J.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 2(36), 445–450 (1961)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Nixon, A.: A constructive characterisation of circuits in the simple (2, 2)-sparsity matroid. arXiv:1202.3294v2 (2012, preprint)Google Scholar
  33. 33.
    Nixon, A., Owen, J.: An inductive construction of (2, 1)-tight graphs. arXiv:1103.2967v2 (2011, preprint)Google Scholar
  34. 34.
    Nixon, A., Ross, E.: Periodic rigidity on a variable torus using inductive constructions. arXiv:1204.1349 (2012, preprint)Google Scholar
  35. 35.
    Nixon, A., Owen, J., Power, S.: A laman theorem for frameworks on surfaces of revolution. arXiv:1210.7073v2 (2012, preprint)Google Scholar
  36. 36.
    Nixon, A., Owen, J.C., Power, S.C.: Rigidity of frameworks supported on surfaces. SIAM J. Discret. Math. 26(4), 1733–1757 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Pilaud, V., Santos, F.: Multitriangulations as complexes of star polygons. Discret. Comput. Geom. 41(2), 284–317 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Recent Progress in Rigidity Theory 08w2137, Banff International Research Station. Accessed 11–13 July 2008
  39. 39.
    Recski, A.: Matroid Theory and its Applications in Electric Network Theory and in Statics. Volume 6 of Algorithms and Combinatorics. Springer, Berlin (1989)Google Scholar
  40. 40.
    Rigidity of periodic and symmetric structures in nature and engineering, The Kavli Royal Society International Centre. Accessed 23–24 Feb 2012
  41. 41.
    Ross, E.: The geometric and combinatorial rigidity of periodic graphs. PhD thesis, York University (2011).
  42. 42.
    Ross, E.: The rigidity of periodic body-bar frameworks on the three-dimensional fixed torus. Phil. Trans. R. Soc. A, 372 (2014)Google Scholar
  43. 43.
    Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations – a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.), Surveys on Discrete and Computational Geometry: Twenty Years Later. Volume 453 of Contemporary Mathematics, pp. 343–410. American Mathematical Society, Providence (2008)CrossRefGoogle Scholar
  44. 44.
    Schulze, B.: Symmetric Laman theorems for the groups \(\mathcal{C}_{2}\) and \(\mathcal{C}_{s}\). Electron. J. Combin. 17(1), 1–61 (2010)MathSciNetGoogle Scholar
  45. 45.
    Schulze, B.: Symmetric versions of Laman’s theorem. Discret. Comput. Geom. 44(4), 946–974 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Servatius, B., Servatius, H.: On the 2-sum in rigidity matroids. Eur. J. Combin. 32(6), 931–936 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Servatius, B., Whiteley, W.: Constraining plane configurations in computer-aided design: combinatorics of directions and lengths. SIAM J. Discret. Math. 12(1), 136–153 (1999, electronic)Google Scholar
  48. 48.
    Streinu, I.: Parallel-redrawing mechanisms, pseudo-triangulations and kinetic planar graphs. In: Graph Drawing. Volume 3843 of Lecture Notes in Computer Science, pp. 421–433. Springer, Berlin (2006)Google Scholar
  49. 49.
    Tay, T.-S.: Rigidity of multigraphs I: linking rigid bodies in n-space. J. Combin. Theory B 26, 95–112 (1984)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Tay, T.-S.: Henneberg’s method for bar and body frameworks. Struct. Topol. 17, 53–58 (1991)zbMATHMathSciNetGoogle Scholar
  51. 51.
    Tay, T.-S.: On the generic rigidity of bar-frameworks. Adv. Appl. Math. 23(1), 14–28 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Tay, T.-S., Whiteley, W.: Generating isostatic frameworks. Struct. Topol. 11, 21–69 (1985). Dual French-English textGoogle Scholar
  53. 53.
    Whiteley, W.: Vertex splitting in isostatic frameworks. Struct. Topol. 16, 23–30 (1990). Dual French-English textGoogle Scholar
  54. 54.
    Whiteley, W.: Some matroids from discrete applied geometry. In: Matroid theory (Seattle, 1995). Volume 197 of Contemporary Mathematics, pp. 171–311. American Mathematical Society, Providence (1996)Google Scholar
  55. 55.
    Whiteley, W.: Rigidity and scene analysis. In: Handbook of Discrete and Computational Geometry. CRC Press Series on Discrete Mathematics and its Applications, pp. 893–916. CRC, Boca Raton (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematics, Heilbronn Institute for Mathematical ResearchUniversity of BristolBristolUK
  2. 2.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations