Skip to main content

One Brick at a Time: A Survey of Inductive Constructions in Rigidity Theory

  • Chapter
  • First Online:

Part of the book series: Fields Institute Communications ((FIC,volume 70))

Abstract

We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. As the survey progresses we describe the key open problems related to inductions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berg, A.R., Jordán, T.: A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Combin. Theory B 88(1), 77–97 (2003)

    Article  MATH  Google Scholar 

  3. Borcea, C., Streinu, I.: The number of embeddings of minimally rigid graphs. Discret. Comput. Geom. 31(2), 287–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borcea, C., Streinu, I.: Minimally rigid periodic graphs. Bull. Lond. Math. Soc. 43, 1093–1103 (2010)

    Article  MathSciNet  Google Scholar 

  5. Borcea, C.S., Streinu, I.: Periodic frameworks and flexibility. Proc. R. Soc. A 466(2121), 2633–2649 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borcea, C.S., Streinu, I., Tanigawa, S.-I.: Periodic body-and-bar frameworks. In: Proceedings of the 2012 Symposium on Computational Geometry, SoCG’12, Chapel Hill, pp. 347–356. ACM, New York (2012)

    Google Scholar 

  7. Cheung, M., Whiteley, W.: Transfer of global rigidity results among dimensions: graph powers and coning (2008, preprint)

    Google Scholar 

  8. Connelly, R.: Generic global rigidity. Discret. Comput. Geom. 33(4), 549–563 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Connelly, R., Jordán, T., Whiteley, W.: Generic global rigidity of body-bar frameworks J. Combin. Theory Ser. B 103(6), 689–705 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fekete, Z., Szegő, L.: A note on [k, l]-sparse graphs. In: Graph Theory, pp. 169–177. Birkhäuser, Cambridge (2006)

    Google Scholar 

  11. Finbow, W., Whiteley, W.: Isostatic block and hole frameworks. SIAM J. Discret. Math. 27(2), 991–1020 (2013)

    Article  MATH  Google Scholar 

  12. Frank, A., Szegő, L.: Constructive characterizations for packing and covering with trees. Discret. Appl. Math. 131(2), 347–371 (2003)

    Article  MATH  Google Scholar 

  13. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Volume 2 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1993)

    Google Scholar 

  14. Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. Comput. Geom. Theory Appl. 31(1–2), 63–100 (2005)

    MathSciNet  Google Scholar 

  15. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Henneberg, L.: Die Graphische der Starren Systeme. B.G. Teubner, Leipzig (1911)

    MATH  Google Scholar 

  17. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Combin. Theory B 94(1), 1–29 (2005)

    Article  MATH  Google Scholar 

  18. Jackson, B., Jordán, T.: Graph Theoretic Techniques in the Analysis of Uniquely Localizable Sensor Networks. In: Mao,G., Fidanm, B. (eds.), Localization Algorithms and Strategies for Wireless Sensor Networks, pp. 145–173. IGI Global (2009)

    Google Scholar 

  19. Jackson, B., Jordán, T.: Globally rigid circuits of the direction-length rigidity matroid. J. Combin. Theory B 100(1), 1–22 (2010)

    Article  MATH  Google Scholar 

  20. Jackson, B., Owen, J.: The number of equivalent realisations of a rigid graph. arXiv:1204.1228 (2012, preprint)

    Google Scholar 

  21. Jackson, B., Jordán, T., Szabadka, Z.: Globally linked pairs of vertices in equivalent realizations of graphs. Discret. Comput. Geom. 35(3), 493–512 (2006)

    Article  MATH  Google Scholar 

  22. Jordán, T., Szabadka, Z.: Operations preserving the global rigidity of graphs and frameworks in the plane. Comput. Geom. 42(6–7), 511–521 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jordán, T., Kaszanitsky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane EGRES technical report TR-2012-17 (2012)

    Google Scholar 

  24. Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. Discret. Comput. Geom. 45(4), 647–700 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4:331–340 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discret. Math. 308(8), 1425–1437 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Malestein, J., Theran, L.: Generic rigidity of frameworks with orientation-preserving crystallographic symmetry. arXiv:1108.2518 (2011)

    Google Scholar 

  28. Malestein, J., Theran, L.: Frameworks with forced symmetry i: reflections and rotations. arxXiv:1304.0398 (2012, preprint)

    Google Scholar 

  29. Malestein, J., Theran, L.: Generic combinatorial rigidity of periodic frameworks. Adv. Math. 233, 291–331 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Maxwell, J.C.: On the claculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864)

    Google Scholar 

  31. Nash-Williams, C.S.J.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 2(36), 445–450 (1961)

    Article  MathSciNet  Google Scholar 

  32. Nixon, A.: A constructive characterisation of circuits in the simple (2, 2)-sparsity matroid. arXiv:1202.3294v2 (2012, preprint)

    Google Scholar 

  33. Nixon, A., Owen, J.: An inductive construction of (2, 1)-tight graphs. arXiv:1103.2967v2 (2011, preprint)

    Google Scholar 

  34. Nixon, A., Ross, E.: Periodic rigidity on a variable torus using inductive constructions. arXiv:1204.1349 (2012, preprint)

    Google Scholar 

  35. Nixon, A., Owen, J., Power, S.: A laman theorem for frameworks on surfaces of revolution. arXiv:1210.7073v2 (2012, preprint)

    Google Scholar 

  36. Nixon, A., Owen, J.C., Power, S.C.: Rigidity of frameworks supported on surfaces. SIAM J. Discret. Math. 26(4), 1733–1757 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pilaud, V., Santos, F.: Multitriangulations as complexes of star polygons. Discret. Comput. Geom. 41(2), 284–317 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Recent Progress in Rigidity Theory 08w2137, Banff International Research Station. http://www.birs.ca/workshops/2008/08w2137/report08w2137.pdf. Accessed 11–13 July 2008

  39. Recski, A.: Matroid Theory and its Applications in Electric Network Theory and in Statics. Volume 6 of Algorithms and Combinatorics. Springer, Berlin (1989)

    Google Scholar 

  40. Rigidity of periodic and symmetric structures in nature and engineering, The Kavli Royal Society International Centre. http://royalsociety.org/events/Rigidity-of-periodic-and-symmetric-structures/. Accessed 23–24 Feb 2012

  41. Ross, E.: The geometric and combinatorial rigidity of periodic graphs. PhD thesis, York University (2011). http://www.math.yorku.ca/~ejross/RossThesis.pdf

  42. Ross, E.: The rigidity of periodic body-bar frameworks on the three-dimensional fixed torus. Phil. Trans. R. Soc. A, 372 (2014)

    Google Scholar 

  43. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations – a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.), Surveys on Discrete and Computational Geometry: Twenty Years Later. Volume 453 of Contemporary Mathematics, pp. 343–410. American Mathematical Society, Providence (2008)

    Chapter  Google Scholar 

  44. Schulze, B.: Symmetric Laman theorems for the groups \(\mathcal{C}_{2}\) and \(\mathcal{C}_{s}\). Electron. J. Combin. 17(1), 1–61 (2010)

    MathSciNet  Google Scholar 

  45. Schulze, B.: Symmetric versions of Laman’s theorem. Discret. Comput. Geom. 44(4), 946–974 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Servatius, B., Servatius, H.: On the 2-sum in rigidity matroids. Eur. J. Combin. 32(6), 931–936 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Servatius, B., Whiteley, W.: Constraining plane configurations in computer-aided design: combinatorics of directions and lengths. SIAM J. Discret. Math. 12(1), 136–153 (1999, electronic)

    Google Scholar 

  48. Streinu, I.: Parallel-redrawing mechanisms, pseudo-triangulations and kinetic planar graphs. In: Graph Drawing. Volume 3843 of Lecture Notes in Computer Science, pp. 421–433. Springer, Berlin (2006)

    Google Scholar 

  49. Tay, T.-S.: Rigidity of multigraphs I: linking rigid bodies in n-space. J. Combin. Theory B 26, 95–112 (1984)

    Article  MathSciNet  Google Scholar 

  50. Tay, T.-S.: Henneberg’s method for bar and body frameworks. Struct. Topol. 17, 53–58 (1991)

    MATH  MathSciNet  Google Scholar 

  51. Tay, T.-S.: On the generic rigidity of bar-frameworks. Adv. Appl. Math. 23(1), 14–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tay, T.-S., Whiteley, W.: Generating isostatic frameworks. Struct. Topol. 11, 21–69 (1985). Dual French-English text

    Google Scholar 

  53. Whiteley, W.: Vertex splitting in isostatic frameworks. Struct. Topol. 16, 23–30 (1990). Dual French-English text

    Google Scholar 

  54. Whiteley, W.: Some matroids from discrete applied geometry. In: Matroid theory (Seattle, 1995). Volume 197 of Contemporary Mathematics, pp. 171–311. American Mathematical Society, Providence (1996)

    Google Scholar 

  55. Whiteley, W.: Rigidity and scene analysis. In: Handbook of Discrete and Computational Geometry. CRC Press Series on Discrete Mathematics and its Applications, pp. 893–916. CRC, Boca Raton (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nixon, A., Ross, E. (2014). One Brick at a Time: A Survey of Inductive Constructions in Rigidity Theory. In: Connelly, R., Ivić Weiss, A., Whiteley, W. (eds) Rigidity and Symmetry. Fields Institute Communications, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0781-6_15

Download citation

Publish with us

Policies and ethics