Generic Rigidity with Forced Symmetry and Sparse Colored Graphs

  • Justin MalesteinEmail author
  • Louis Theran
Part of the Fields Institute Communications book series (FIC, volume 70)


We review some recent results in the generic rigidity theory of planar frameworks with forced symmetry, giving a uniform treatment to the topic. We also give new combinatorial characterizations of minimally rigid periodic frameworks with fixed-area fundamental domain and fixed-angle fundamental domain.


Rigidity Matroid Colored graph Periodic framework Forced symmetry Sparse graphs 

Subject Classifications

52C25 52B40 



We thank the Fields Institute for its hospitality during the Workshop on Rigidity and Symmetry, the workshop organizers for putting together the program, and the conference participants for many interesting discussions. LT is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 247029-SDModels. JM partially supported by NSF CDI-I grant DMR 0835586 and (for finial preparation) the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 226135.


  1. 1.
    Berardi, M., Heeringa, B., Malestein, J., Theran, L.: Rigid components in fixed-latice and cone frameworks. In: Proceedings of the 23rd Annual Canadian Conference on Computational Geometry (CCCG), Toronto (2011).
  2. 2.
    Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume. Math. Ann. 70(3), 297–336 (1911). doi:10.1007/BF01564500CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich. Math. Ann. 72(3), 400–412 (1912). doi:10.1007/BF01456724Google Scholar
  4. 4.
    Borcea, C.S., Streinu, I.: Periodic frameworks and flexibility. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 466(2121), 2633–2649 (2010). ISSN 1364-5021. doi:10.1098/rspa.2009.0676.
  5. 5.
    Borcea, C.S., Streinu, I.: Minimally rigid periodic graphs. Bull. Lond. Math. Soc. 43(6), 1093–1103 (2011).
  6. 6.
    Fekete, Z.: Source location with rigidity and tree packing requirements. Oper. Res. Lett. 34(6), 607–612 (2006). ISSN 0167-6377. doi:10.1016/j.orl.2005.10.005.
  7. 7.
    Fekete, Z., Szegő, L.: A note on [k, l]-sparse graphs. In: Bondy, A., Fonlupt, J., Fouquet, J.-L., Fournier, J.-C., Ramrez Alfonsn, J.L. (eds.) Graph Theory in Paris. Trends Mathematics, pp. 169–177. Birkhäuser, Basel (2007). doi:10.1007/978-3-7643-7400-6_13.
  8. 8.
    Fekete, Z., Jordán, T., Kaszanitzky, V.: Rigid two-dimensional frameworks with two coincident points. Talk at the Fields Institute Workshop of Rigidity (2011).
  9. 9.
    Conder, M., Connelly, R., Jordán, T., Monson, B., Schulte, E., Streinu, I., Weiss, A. I., Whiteley, W.: Fields Institute Workshop on Rigidity and Symmetry (2011).
  10. 10.
    Fowler, P.W., Guest, S.D.: A symmetry extension of Maxwell’s rule for rigidity of frames. Int. J. Solids Struct. 37(12), 1793–1804 (2000). ISSN 0020-7683. doi:10.1016/S0020-7683(98)00326-6.
  11. 11.
    Guest, S.D., Hutchinson, J.W.: On the determinacy of repetitive structures. J. Mech. Phys. Solids 51(3), 383–391 (2003). ISSN 0022-5096. doi:10.1016/S0022-5096(02)00107-2.
  12. 12.
    Haas, R.: Characterizations of arboricity of graphs. Ars Comb. 63, 129–137 (2002). ISSN 0381-7032Google Scholar
  13. 13.
    Haas, R., Lee, A., Streinu, I., Theran, L.: Characterizing sparse graphs by map decompositions. J. Comb. Math. Comb. Comput. 62, 3–11 (2007). ISSN 0835-3026Google Scholar
  14. 14.
    Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane (2012, preprint).
  15. 15.
    Kangwai, R.D., Guest, S.D.: Detection of finite mechanisms in symmetric structures. Int. J. Solids Struct. 36(36), 5507–5527 (1999). ISSN 0020-7683. doi:10.1016/S0020-7683(98)00234-0.
  16. 16.
    Kangwai, R.D, Guest, S.D.: Symmetry-adapted equilibrium matrices. Int. J. Solids Struct. 37(11), 1525–1548 (2000). ISSN 0020-7683. doi:10.1016/S0020-7683(98)00318-7.
  17. 17.
    Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. Discret. Comput. Geom. 45(4), 647–700 (2011). ISSN 0179-5376. doi:10.1007/s00454-011-9348-6.
  18. 18.
    Katoh, N., Tanigawa, S.: Rooted-tree decompositions with matroid constraints and the infinitesimal rigidity of frameworks with boundaries (2013). ISSN 0895-4801.
  19. 19.
    Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970). ISSN 0022-0833Google Scholar
  20. 20.
    Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discret. Math. 308(8), 1425–1437 (2008). ISSN 0012-365X. doi:10.1016/j.disc.2007.07.104.
  21. 21.
    London Mathematical Society Workshop: Rigidity of Frameworks and Applications (2010).
  22. 22.
    Lovász, L.: Matroid matching and some applications. J. Comb. Theory Ser. B 28(2), 208–236 (1980). ISSN 0095-8956. doi:10.1016/0095-8956(80)90066-0.
  23. 23.
    Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebr. Discret. Methods 3(1), 91–98 (1982). ISSN 0196-5212. doi:10.1137/0603009.
  24. 24.
    Malestein, J., Theran, L.: Generic rigidity of frameworks with orientation-preserving crystallographic symmetry (2011, preprint). arXiv:1108.2518. The results of this preprint have been merged into [27, 28]
  25. 25.
    Malestein, J., Theran, L.: Generic rigidity of frameworks with reflection symmetry (2012, preprint). arXiv:1203.2276. The results of this preprint have been merged into [28
  26. 26.
    Malestein, J., Theran, L.: Generic combinatorial rigidity of periodic frameworks. Adv. Math. 233, 291–331 (2013). ISSN 0001-8708. doi:10.1016/j.aim.2012.10.007.
  27. 27.
    Malestein, J., Theran, L.: Frameworks with forced symmetry II: orientation-preserving crystallographic groups. Geometriae Dedicata (2013). doi:10.1007/s10711-013-9878-6.
  28. 28.
    Malestein, J., Theran, L.: Frameworks with forced symmetry I: reflections and rotations (2013, preprint). arXiv:304.0398.
  29. 29.
    Maxwell, J.C.: On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294 (1864)Google Scholar
  30. 30.
    Nixon, A., Owen, J.: An inductive construction of (2,1)-tight graphs (2011, preprint). arXiv:1103.2967.
  31. 31.
    Nixon, A., Owen, J.C., Power, S.C.: Rigidity of frameworks supported on surfaces. SIAM J. Discret. Math. 26(4), 1733–1757 (2012). ISSN 0895-4801. doi:10.1137/110848852.
  32. 32.
    Owen, J.C., Power, S.C.: Frameworks symmetry and rigidity. Int. J. Comput. Geom. Appl. 20(6), 723–750 (2010). ISSN 0218-1959. doi:10.1142/S0218195910003505.
  33. 33.
    Owen, J.C., Power, S.C.: Infinite bar-joint frameworks, crystals and operator theory. N. Y. J. Math. 17, 445–490 (2011). ISSN 1076-9803.
  34. 34.
    Recski, A.: A network theory approach to the rigidity of skeletal structures. II. Laman’s theorem and topological formulae. Discret. Appl. Math. 8(1), 63–68 (1984). ISSN 0166-218X. doi:10.1016/0166-218X(84)90079-9.
  35. 35.
    Recski, A.: Matroid Theory and Its Applications in Electric Network Theory and in Statics. Volume 6 of Algorithms and Combinatorics. Springer, Berlin (1989). ISBN 3-540-15285-7Google Scholar
  36. 36.
    Rivin, I.: Geometric simulations – a lesson from virtual zeolites. Nat. Mater. 5(12), 931–932 (2006). doi:10.1038/nmat1792.
  37. 37.
    Ross, E.: Periodic rigidity. Talk at the Spring AMS Sectional Meeting (2009).
  38. 38.
    Ross, E.: The Rigidity of Periodic Frameworks as Graphs on a Torus. PhD thesis, York University (2011).
  39. 39.
    Ross, E., Schulze, B., Whiteley, W.: Finite motions from periodic frameworks with added symmetry. Int. J. Solids Struct. 48(11–12), 1711–1729 (2011). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2011.02.018.
  40. 40.
    Guest, S., Fowler, P., Power S.: Royal Society Workshop on Rigidity of Periodic and Symmetric Structures in Nature and Engineering (2012).
  41. 41.
    Schulze, B.: Symmetric Laman theorems for the groups \(\mathcal{C}_{2}\) and \(\mathcal{C}_{s}\). Electron. J. Comb. 17(1), Research Paper 154, 61 (2010). ISSN 1077-8926.
  42. 42.
    Schulze, B.: Symmetric versions of Laman’s theorem. Discret. Comput. Geom. 44(4), 946–972 (2010). ISSN 0179-5376. doi:10.1007/s00454-009-9231-x.
  43. 43.
    Schulze, B., Whiteley, W.: The orbit rigidity matrix of a symmetric framework. Discret. Comput. Geom. 46(3), 561–598 (2011). ISSN 0179-5376. doi:10.1007/s00454-010-9317-5.
  44. 44.
    Servatius, B., Whiteley, W.: Constraining plane configurations in computer-aided design: combinatorics of directions and lengths. SIAM J. Discret. Math. 12(1), 136–153 (1999). (electronic) ISSN 0895-4801. doi:10.1137/S0895480196307342.
  45. 45.
    Streinu, I., Theran, L.: Sparsity-certifying graph decompositions. Graphs Comb. 25(2), 219–238 (2009). ISSN 0911-0119. doi:10.1007/s00373-008-0834-4.
  46. 46.
    Streinu, I., Theran, L.: Slider-pinning rigidity: a Maxwell-Laman-type theorem. Discret. Comput. Geom. 44(4), 812–837 (2010). ISSN 0179-5376. doi: 10.1007/s00454-010-9283-y.
  47. 47.
    Streinu, I., Theran, L.: Natural realizations of sparsity matroids. Ars Math. Contemp. 4(1), 141–151 (2011). ISSN 1855-3966Google Scholar
  48. 48.
    Tanigawa, S.: Matroids of gain graphs in applied discrete geometry (2012, preprint).
  49. 49.
    Tay, T.-S.: Rigidity of multigraphs. I. Linking rigid bodies in n-space. J. Comb. Theory Ser. B 36(1), 95–112 (1984). ISSN 0095-8956. doi:10.1016/0095-8956(84)90016-9.
  50. 50.
    Treacy, M., Rivin, I., Balkovsky, E., Randall, K.: Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microporous Mesoporous Mater. 74, 121–132 (2004)CrossRefGoogle Scholar
  51. 51.
    Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM J. Discret. Math. 1(2), 237–255 (1988). ISSN 0895-4801. doi:10.1137/0401025.
  52. 52.
    Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J., Oxley, J.G., Servatius, B. (eds.) Matroid Theory. Volume 197 of Contemporary Mathematics, pp. 171–311. American Mathematical Society, Providence (1996)Google Scholar
  53. 53.
    Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Comb. 5(Dynamic Surveys 8), 124pp (1998). (electronic) ISSN 1077-8926. Manuscript prepared with Marge Pratt

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat RamThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Institut für MathematikFreie Universitüt BerlinBerlinGermany

Personalised recommendations