Skip to main content

Beauville Surfaces and Groups: A Survey

  • Chapter
  • First Online:
Rigidity and Symmetry

Part of the book series: Fields Institute Communications ((FIC,volume 70))

Abstract

This is a survey of recent progress on Beauville surfaces, concentrating almost entirely on the group-theoretic and combinatorial problems associated with them. A Beauville surface \(\mathcal{S}\) is a complex surface formed from two orientably regular hypermaps of genus at least 2 (viewed as compact Riemann surfaces and hence as algebraic curves), with the same automorphism group G acting freely on their product. The following questions are discussed: Which groups G (called Beauville groups) have this property? What can be said about the automorphism group and the fundamental group of \(\mathcal{S}\)? Beauville surfaces are defined (as algebraic varieties) over the field \(\overline{\mathbb{Q}}\) of algebraic numbers, so how does the absolute Galois group \(\mathrm{Gal}\,\overline{\mathbb{Q}}/\mathbb{Q}\) act on them?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, as is customary in algebraic geometry, a ‘surface’ is an algebraic variety which is 2-dimensional over the field of coefficients; in this case, that field is \(\mathbb{C}\) so these surfaces have dimension 4 as real manifolds. Rather confusingly, a complex algebraic curve, 1-dimensional over \(\mathbb{C}\), can be regarded as a Riemann surface, where ‘surface’ now indicates 2-dimensionality over \(\mathbb{R}\)!

References

  1. Barker, N., Boston, N., Fairbairn, B.: A note on Beauville p-groups. Exp. Math. 21, 298–306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barker, N., Boston, N., Peyerimhoff, N., Vdovina, A.: New examples of Beauville surfaces. Monatsh. Math. 166, 319–327 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauer, I., Catanese, F., Grunewald, F.: Beauville surfaces without real structures I. In: Bogomolov, F., Tschinkel, Y. (eds.) Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol. 235, pp. 1–42. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  4. Bauer, I., Catanese, F., Grunewald, F.: Chebycheff and Belyi polynomials, dessins d’enfants, Beauville surfaces and group theory. Mediterr. J. Math. 3, 121–146 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Beauville, A.: Surfaces Algébriques Complexes. Astérisque, vol. 54. Société Mathématique de France, Paris (1978)

    Google Scholar 

  6. Belyĭ, G.V.: On Galois extensions of a maximal cyclotomic field. Math. USSR Izv. 14, 247–256 (1980)

    Article  MATH  Google Scholar 

  7. Bridson, M.R., Conder, M.D.E., Reid, A.W.: Determining Fuchsian groups by their finite quotients (submitted)

    Google Scholar 

  8. Carter, R.W.: Simple Groups of Lie Type. Wiley, London/New York/Sydney (1972)

    MATH  Google Scholar 

  9. Catanese, F.: Fibred surfaces, varieties isogenous to a product and related moduli spaces. Am. J. Math. 122, 1–44 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Conder, M.D.E.: Hurwitz groups with arbitrarily large centres. Bull. Lond. Math. Soc. 18, 269–271 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon, Oxford (1985)

    MATH  Google Scholar 

  12. Coste, A.D., Jones, G.A., Streit, M., Wolfart, J.: Generalised Fermat hypermaps and Galois orbits. Glasg. Math. J. 51, 289–299 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fairbairn, B.T., Magaard, K., Parker, C.W.: Generation of finite simple groups with an application to groups acting on Beauville surfaces. arXiv:math.GR/1010.3500

    Google Scholar 

  14. Fuertes, Y., González-Diez, G.: On Beauville structures on the groups S n and A n . Math. Z. 264, 959–968 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fuertes, Y., González-Diez, G.: On the number of automorphisms of unmixed Beauville surfaces (preprint)

    Google Scholar 

  16. Fuertes, Y., González-Diez, G., Jaikin-Zapirain, A.: On Beauville surfaces. Groups Geom. Dyn. 5, 107–119 (2011)

    Article  MATH  Google Scholar 

  17. Fuertes, Y., Jones, G.A.: Beauville surfaces and finite groups. J. Algebra 340, 13–27 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garion, S., Larsen, M., Lubotzky, A.: Beauville surfaces and finite simple groups. J. Reine Angew. Math. 666, 225–243 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Garion, S., Penegini, M.: Beauville surfaces, moduli spaces and finite groups (2011). arXiv:math.AG/1107.5534v1

    Google Scholar 

  20. Girondo, E., González-Diez, G.: A note on the action of the absolute Galois group on dessins. Bull. Lond. Math. Soc. 39, 721–723 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Girondo, E., González-Diez, G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants. London Mathematical Society Student Texts, vol. 79. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  22. González-Diez, G.: Belyi’s theorem for complex surfaces. Am. J. Math. 130, 59–74 (2008)

    Article  MATH  Google Scholar 

  23. González-Diez, G., Jaikin-Zapirain, A.: The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces (submitted)

    Google Scholar 

  24. González-Diez, G., Jones, G.A., Torres-Teigell, D.: Beauville surfaces with abelian Beauville group. Math. Scand. (in press)

    Google Scholar 

  25. González-Diez, G., Jones, G.A., Torres-Teigell, D.: Arbitrarily large Galois orbits of non-homeomorphic surfaces. arXiv:math.AG/1110.4930

    Google Scholar 

  26. González-Diez, G., Torres-Teigell, D.: Non-homeomorphic Galois conjugate Beauville surfaces of minimum genera. Adv. Math. 229, 3096–3122 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. González-Diez, G., Torres-Teigell, D.: An introduction to Beauville surfaces via uniformization. In: Jiang, Y., Mitra, S. (eds.) Quasiconformal Mappings, Riemann Surfaces, and Teichmüler Spaces. Contemporary Mathematics, vol. 575, pp. 123–151. American Mathematical Society, Providence (2012)

    Chapter  Google Scholar 

  28. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  29. Grothendieck, A.: Esquisse d’un programme. In: Lochak, P., Schneps, L. (eds.) Geometric Galois Actions 1. Around Grothendieck’s Esquisse d’un Programme. London Mathematical Society Lecture Note Series, vol. 242, pp. 5–84. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  30. Guralnick, R., Malle, G.: Simple groups admit Beauville structures. J. Lond. Math. Soc. 85(2), 694–721 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Havas, G., Wall, G.E., Wamsley, J.W.: The two generator restricted Burnside group of exponent five. Bull. Aust. Math. Soc. 10, 459–470 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jones, G.A.: Regular embeddings of complete bipartite graphs: classification and enumeration. Proc. Lond. Math. Soc. 101(3), 427–453 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jones, G.A.: Automorphism groups of Beauville surfaces. J. Group Theory 16, 353–381 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jones, G.A., Jones, J.M.: Elementary Number Theory. Springer Undergraduate Mathematics Series. Springer, London (1998)

    Book  MATH  Google Scholar 

  36. Jones, G.A., Nedela, R., Škoviera, M.: Regular embeddings of K n, n where n is an odd prime power. Eur. J. Comb. 28, 1863–1875 (2007)

    Article  MATH  Google Scholar 

  37. Jones, G.A., Singerman, D.: Belyi functions, hypermaps and Galois groups. Bull. Lond. Math. Soc. 28, 561–590 (1996)

    Article  MathSciNet  Google Scholar 

  38. Jones, G.A., Singerman, D.: Maps, hypermaps and triangle groups. In: Schneps, L. (ed.) The Grothendieck Theory of Dessins d’enfants (Luminy, 1993). London Mathematical Society Lecture Note Series, vol. 200, pp. 115–145. Cambridge University Press, Cambridge (1994)

    Chapter  Google Scholar 

  39. Jones, G.A., Streit, M.: Galois groups, monodromy groups and cartographic groups. In: Lochak, P., Schneps, L. (eds.) Geometric Galois Actions 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. London Mathematical Society Lecture Note Series, vol. 243, pp. 25–65. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  40. Jones, G.A., Streit, M., Wolfart, J.: Galois action on families of generalised Fermat curves. J. Algebra 307, 829–840 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jones, G.A., Streit, M., Wolfart, J.: Wilson’s map operations on regular dessins and cyclotomic fields of definition. Proc. Lond. Math. Soc. 100, 510–532 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Köck, B.: Belyi’s theorem revisited. Beiträge zur Algebra und Geometrie 45, 253–275 (2004)

    MATH  Google Scholar 

  43. Kostrikin, A.I.: The Burnside problem (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 23, 3–34 (1959)

    MATH  MathSciNet  Google Scholar 

  44. Lucchini, A.: (2, 3, k)-generated groups of large rank. Arch. Math. 73, 241–248 (1999)

    Google Scholar 

  45. Macbeath, A.M.: Generators of the linear fractional groups. In: Leveque, W.J., Straus, E.G. (eds.) Number Theory. Proceedings of Symposia in Pure Mathematics, Houston 1967, vol. 12, pp. 14–32. American Mathematical Society, Providence (1969)

    Google Scholar 

  46. Malle, G., Matzat, B.H.: Inverse Galois Theory. Springer Monographs in Mathematics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  47. O’Brien, E.A., Vaughan-Lee, M.: The 2-generator restricted Burnside group of exponent 7. Int. J. Algebra Comput. 12, 575–592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Reyssat, E.: Quelques Aspects des Surfaces de Riemann. Birkhäuser, Boston/Basel/Berlin (1989)

    MATH  Google Scholar 

  49. Schneps, L.: Dessins d’enfants on the Riemann sphere. In: Schneps, L. (ed.) The Grothendieck Theory of Dessins d’enfants (Luminy, 1993). London Mathematical Society Lecture Note Series, vol. 200, pp. 47–77. Cambridge University Press, Cambridge (1994)

    Chapter  Google Scholar 

  50. Serre, J.-P.: Variétées projectives conjuguées non homéomorphes. Comptes Rendues Acad. Sci. Paris 258, 4194–4196 (1964)

    MATH  Google Scholar 

  51. Serre, J.-P.: Topics in Galois Theory. Jones and Bartlett, Boston (1992)

    MATH  Google Scholar 

  52. Singerman, D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 6(2), 29–38 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  53. Streit, M.: Field of definition and Galois orbits for the Macbeath-Hurwitz curves. Arch. Math. 74, 342–349 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Streit, M., Wolfart, J.: Characters and Galois invariants of regular dessins. Rev. Mat. Complut. 13, 49–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. Streit, M., Wolfart, J.: Cyclic projective planes and Wada dessins. Documenta Mathematica 6, 39–68 (2001)

    MathSciNet  Google Scholar 

  56. Vaughan-Lee, M.: The Restricted Burnside Problem. London Mathematical Society Monographs, New Series, vol. 8, 2nd edn. Clarendon/Oxford University Press, New York (1993)

    Google Scholar 

  57. Völklein, H.: Groups as Galois Groups. An Introduction. Cambridge Studies in Advanced Mathematics, vol. 53. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  58. Walsh, T.R.S.: Hypermaps versus bipartite maps. J. Comb. Theory Ser. B 18, 155–163 (1975)

    Article  MATH  Google Scholar 

  59. Weil, A.: The field of definition of a variety. Am. J. Math. 78, 509–524 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  60. Wilson, R.A.: The Finite Simple Groups. Springer, London (2009)

    Book  MATH  Google Scholar 

  61. Wolfart, J.: The ‘obvious’ part of Belyi’s theorem and Riemann surfaces with many automorphisms. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions 1. London Mathematical Society Lecture Note Series, vol. 242, pp. 97–112. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  62. Wolfart, J.: ABC for polynomials, dessins d’enfants, and uniformization – a survey. In: Schwarz, W., Steuding, J. (eds.) Elementare und Analytische Zahlentheorie. Proceedings ELAZ-Conference, Tagungsband, 24–28 May 2004, pp. 313–343. Steiner, Stuttgart (2006). http://www.math.uni-frankfurt.de/~wolfart/

Download references

Acknowledgements

The author is grateful to Gabino González-Diez and Bernhard Köck for some very helpful comments on an earlier draft of this paper, and to the organisers of the Workshop on Symmetry in Graphs, Maps and Polytopes at the Fields Institute, Toronto, 24–27 October 2011, for the opportunity to give a talk on which it is based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, G.A. (2014). Beauville Surfaces and Groups: A Survey. In: Connelly, R., Ivić Weiss, A., Whiteley, W. (eds) Rigidity and Symmetry. Fields Institute Communications, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0781-6_11

Download citation

Publish with us

Policies and ethics