Skip to main content

Volumes of Polytopes in Spaces of Constant Curvature

  • Chapter
  • First Online:
Rigidity and Symmetry

Part of the book series: Fields Institute Communications ((FIC,volume 70))

Abstract

We overview volume calculations for polyhedra in Euclidean, spherical and hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary tetrahedron in H 3 and S 3. We also present some results, which provide a solution for the Seidel problem on the volume of non-Euclidean tetrahedron. Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find several versions of the Brahmagupta formula for the area of such quadrilateral. We also present a formula for the area of a hyperbolic trapezoid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By an obtuse tetrahedron we mean a tetrahedron with at least one dihedral angle \(> \frac{\pi } {2}\).

References

  1. Abrosimov, N.V.: Solving the Seidel problem on the volume of hyperbolic tetrahedron. Sib. Èlektron. Mat. Izv. 6, 211–218 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Abrosimov, N.V.: Seidel’s problem on the volume of a non-Euclidean tetrahedron. Dokl. Math. 82(3), 843–846 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alekseevskij, D.V., Vinberg, E.B., Solodovnikov, A.S.: Spaces of constant curvature. In: Vinberg, E.B. (ed.) Geometry: Volume 2. Encyclopaedia of Mathematical Sciences. Springer, Berlin/Heidelberg (1993)

    Google Scholar 

  4. Alexandrov, V.A.: An example of a flexible polyhedron with nonconstant volume in the spherical space. Beiträge zur Algebra und Geometrie 38(1), 11–18 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Bilinski, S.: Zur Begründung der elementaren Inhaltslehre in der hyperbolischen Ebene. Math. Ann. 180, 256–268 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bolyai, J., Kárteszi, F. (eds.): Appendix. The Theory of Space. Akadémiai Kiadó, Budapest (1987)

    Google Scholar 

  7. Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. Math. Pures Appl. 5(3), 113–148 (1897)

    Google Scholar 

  8. Cauchy, A.: Sur les polygones et lespolyèdres, seconde mémoire. J. École Polytechnique XVIe Cahier IX, 87–98 (1813); Œuvres Complètes, IIe Série, 1, 26–38 (1905)

    Google Scholar 

  9. Cho, Yu., Kim, H.: On the volume formula for hyperbolic tetrahedra. Discret. Comput. Geom. 22, 347–366 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Inst. Haut. Etud. Sci. Publ. Math. 47, 333–338 (1978)

    Article  MathSciNet  Google Scholar 

  11. Connelly, R.: Conjectures and open questions in rigidity. In: Proceedings of the International Congress of Mathematician, Helsinki, 1978, vol. 1, pp. 407–414 (1980)

    Google Scholar 

  12. Connelly, R.: Comments on generalized Heron polynomials and Robbins’ conjectures. Discret. Math. 309(12), 4192–4196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Connelly, R., Sabitov, I., Walz, A.: The bellows conjecture. Contrib. Algebra Geom. 38(1), 1–10 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Coxeter, H.S.M.: The functions of Schläfli and Lobatschefsky. Q. J. Math. Oxf. 6(1), 13–29 (1935)

    Article  Google Scholar 

  15. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited. The Mathematical Association of America, Washington, DC (1967)

    MATH  Google Scholar 

  16. Derevnin, D.A., Mednykh, A.D.: A formula for the volume of a hyperbolic tetrahedron. Russ. Math. Surv. 60(2), 159–160 (2005)

    Article  MathSciNet  Google Scholar 

  17. Dickinson, W., Salmassi, M.: The right right triangle on the sphere. Coll. Math. J. 39(1), 24–33 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Doyle, P., Leibon, G.: 23040 symmetries of hyperbolic tetrahedra. arXiv:math/0309187v1 [math.GT]

    Google Scholar 

  19. Fedorchuk, M., Pak, I.: Rigidity and polynomial invariants of convex polytopes. Duke Math. J. 129(2), 371–404 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gaifullin, A.A.: Generalization of Sabitov’s theorem to polyhedra of artibrary dimensions, 21pp (2012). arXiv:1210.5408

    Google Scholar 

  21. Galiulin, R.V., Mikhalev, S.N., Sabitov, I.Kh.: Some applications of the formula for the volume of an octahedron. Math. Notes 76(1), 25–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guo, R., Sönmez, N.: Cyclic polygons in classical geometry. Comptes rendus de l’ Academie bulgare des sciences 64(2), 185–194 (2011). arXiv:1009.2970v1 [math.MG]

    Google Scholar 

  23. Hsiang, W.-Yi.: On infinitesimal symmetrization and volume formula for spherical or hyperbolic tetrahedrons. Q. J. Math. Oxf. 39(2), 463–468 (1988)

    Google Scholar 

  24. Ivanoff, V.F.: Solution to problem E1376: Bretschneider’s formula. Am. Math. Mon. 67, 291–292 (1960)

    Article  MathSciNet  Google Scholar 

  25. Kneser, H.: Der Simplexinhalt in der nichteuklidischen Geometrie. Dtsch. Math. 1, 337–340 (1936)

    Google Scholar 

  26. Lobatschefskij, N.I.: Imaginäre Geometrie und ihre Anwendung auf einige Integrale. Deutsche Übersetzung von H. Liebmann. Teubner, Leipzig (1904)

    Google Scholar 

  27. Luo, F.: On a problem of Fenchel. Geometriae Dedicata 64, 227–282 (1997)

    Article  Google Scholar 

  28. M’Clelland, W.J., Preston, T.: A Treatise on Spherical Trigonometry with Application to Spherical Geometry and Numerous Examples. Part II. Macmillian, London (1886)

    Google Scholar 

  29. Mednykh, A.D.: Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane. Sib. Èlektron. Mat. Izv. 9, 247–255 (2012)

    MathSciNet  Google Scholar 

  30. Mednykh, A.D., Pashkevich, M.G.: Elementary formulas for a hyperbolic tetrahedron. Sib. Math. J. 47(4), 687–695 (2006)

    Article  MathSciNet  Google Scholar 

  31. Milnor, J.: Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. 6(1), 9–24 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  32. Milnor, J.W.: How to compute volume in hyperbolic space. In: Collected Papers, vol. 1. Geometry, pp. 189–212. Publish or Perish, Houston (1994)

    Google Scholar 

  33. Möbius, A.F.: Ueber die Gleichungen, mittelst welcher aus den Seiten eines in einen Kreis zu beschreibenden Vielecks der Halbmesser des Kreises und die Fläche des Vielecks gefunden werden. Crelle’s J. 35, 5–34 (1828)

    Article  Google Scholar 

  34. Mohanty, Y.Z.: Hyperbolic polyhedra: volume and scissors congruence. Ph.D. thesis. University of California, San Diego (2002)

    Google Scholar 

  35. Mohanty, Y.: The Regge symmetry is a scissors congruence in hyperbolic space. Algebr. Geom. Topol. 3, 1–31 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Murakami, J., Yano, M.: On the volume of a hyperbolic and spherical tetrahedron. Commun. Anal. Geom. 13, 379–200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pascal, E.: I determinanti: teoria ed applicazioni. U. Hoepli, Milano (1897)

    MATH  Google Scholar 

  38. Petrov, F.V.: Inscribed quadrilaterals and trapezoids in absolute geometry. Mat. Prosveshchenie 13, 149–154 (2009)

    Google Scholar 

  39. Prasolov, V.V.: Problems and Theorems in Linear Algebra. Translations of Mathematical Monographs, vol. 134. American Mathematical Society, Providence (1994)

    Google Scholar 

  40. Richmond, H.W.: The volume of a tetrahedron in elliptic space. Q. J. Math. 34, 175–177 (1903)

    Google Scholar 

  41. Robbins, D.P.: Areas of polygons inscribed in a circle. Discret. Comput. Geom. 12, 223–236 (1994)

    Article  MATH  Google Scholar 

  42. Sabitov, I.Kh.: The volume of polyhedron as a function of its metric. Fundam. Prikl. Mat. 2(4), 1235–1246 (1996)

    MATH  MathSciNet  Google Scholar 

  43. Sabitov, I.Kh.: A generalized Heron–Tartaglia formula and some of its consequences. Sb. Math. 189(10), 1533–1561 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sabitov, I.Kh.: Solution of cyclic polygons. Mat. Prosveshchenie 14, 83–106 (2010)

    Google Scholar 

  45. Schläfli, L.: On the multiple integral \(\int \int \ldots \int dxdy\ldots dz\) whose limits are \(p_{1} = a_{1}x + b_{1}y +\ldots +h_{1}z > 0,p_{2} > 0,\ldots p_{n} > 0\) and \({x}^{2} + {y}^{2} +\ldots +{z}^{2} < 1\). Q. J. Math. 2, 269–300 (1858); 3, 54–68; 97–108 (1860)

    Google Scholar 

  46. Schläfli, L.: Theorie der vielfachen Kontinuität. In: Gesammelte mathematishe Abhandlungen. Birkhäuser, Basel (1950)

    Google Scholar 

  47. Seidel, J.J.: On the volume of a hyperbolic simplex. Stud. Sci. Math. Hung. 21, 243–249 (1986)

    MATH  MathSciNet  Google Scholar 

  48. Sforza, G.: Spazi metrico-proiettivi. Ricerche di Estensionimetria Integrale Ser. III VIII(Appendice), 41–66 (1907)

    Google Scholar 

  49. Sokolova, D.Yu.: On trapezoid area on the Lobachevskii plane. Sib. Èlektron. Mat. Izv. 9, 256–260 (2012)

    MathSciNet  Google Scholar 

  50. Sommerville, D.M.Y.: An Introduction to the Geometry of n Dimensions. Dover, New York (1958)

    MATH  Google Scholar 

  51. Todhunter, I.: Spherical Trigonometry. Macmillan, London (1886)

    Google Scholar 

  52. Ushijima, A.: Volume formula for generalized hyperbolic tetrahedra. In: Prékopa, A., Molnár, E. (eds.) Non-Euclidean Geometries. Mathematics and Its Applications, vol. 581, pp. 249–265 (2006)

    Article  MathSciNet  Google Scholar 

  53. Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)

    Google Scholar 

  54. Valentine, J.E.: An analogue of Ptolemy’s theorem and its converse in hyperbolic geometry. Pac. J. Math. 34, 817–825 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  55. Varfolomeev, V.V.: Inscribed polygons and Heron polynomials. Sb. Math. 194(3), 311–331 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  56. Walter, R.: Polygons in hyperbolic geometry 1: Rigidity and inversion of the n−inequality. arXiv:1008.3404v1 [math.MG]

    Google Scholar 

  57. Walter, R.: Polygons in hyperbolic geometry 2: Maximality of area. arXiv:1008.3821v1 [math.MG]

    Google Scholar 

  58. Wimmer, L.: Cyclic polygons in non-Euclidean geometry. Elem. Math. 66, 74–82 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by Russian Foundation for Basic Research (grants 12-01-00210, 12-01-33058, 12-01-31006 and 13-01-00513) and Council for Grants of President of the Russian Federation (grants MK-4447.2012.1 and SS-921.2012.1).

The authors would like to express their gratitude to a referee for careful consideration of the paper and useful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Abrosimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abrosimov, N., Mednykh, A. (2014). Volumes of Polytopes in Spaces of Constant Curvature. In: Connelly, R., Ivić Weiss, A., Whiteley, W. (eds) Rigidity and Symmetry. Fields Institute Communications, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0781-6_1

Download citation

Publish with us

Policies and ethics