Skip to main content

Abstract

The extensive discussion about OMA algorithms and tools for validation and postprocessing of modal identification results represents the background of the present chapter that is focused on a number of explanatory applications, including some special issues. Most of the reported applications refer to real experimental tests, which have been selected as representative of frequently tackled issues in modal testing and data processing. In particular, they illustrate a possible approach to assess the capability of the measurement chain of fitting the requirements of a specific application, methods for accurate estimation of damping ratios, and methods for identification of spurious harmonics. Additional examples concern the possible uses of the identified modal parameters, such as numerical–experimental correlation and tuning of a numerical model, development of empirical correlations for the estimation of the fundamental natural frequencies of selected typologies of structures, the estimation of modal masses by mass change methods. As a result, the present chapter provides a definite overview of opportunities and limitations of OMA and a guide for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agneni A, Coppotelli G, Grappasonni C (2012) A method for the harmonic removal in operational modal analysis of rotating blades. Mech Syst Signal Process 27:604–618

    Article  Google Scholar 

  • Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. John Wiley & Sons, New York

    Google Scholar 

  • Bernal D (2004) Modal scaling from known mass perturbations. ASCE J Eng Mech 130(9):1083–1088

    Article  Google Scholar 

  • Brincker R, Andersen P, Møller N (2000) An indicator for separation of structural and harmonic modes in output-only modal testing. In: Proc XVIII international modal analysis conference, San Antonio, TX

    Google Scholar 

  • Brincker R, Ventura CE, Andersen P (2003) Why output-only modal testing is a desirable tool for a wide range of practical applications. In: Proc XXI international modal analysis conference, Kissimmee, FL

    Google Scholar 

  • CEN, European Committee For Standardization (2003) Eurocode 8: design provisions for earthquake resistance of structures, part 1.1: general rules, seismic actions and rules for buildings, Pren 1998-1, Brussels

    Google Scholar 

  • CEN, European Committee for Standardization (2005) Eurocode 8: design provisions for earthquake resistance of structures. Part 3: assessment and retrofitting of buildings. Brussels

    Google Scholar 

  • Chopra AK (2000) Dynamics of structures – theory and applications to earthquake engineering, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Computers and Structures (2006) SAP2000® v.11, manual. Computers and Structures Inc, Berkeley, CA

    Google Scholar 

  • Consiglio Superiore dei Lavori Pubblici (2008) Nuove Norme Tecniche per le Costruzioni, D.M. Infrastrutture 14/01/2008, published on S.O. n. 30 at the G.U. 04/02/2008 n. 29 (in Italian)

    Google Scholar 

  • Conte C, Rainieri C, Aiello MA, Fabbrocino G (2011) On-site assessment of masonry vaults: dynamic tests and numerical analysis. Geofiz 28:127–143

    Google Scholar 

  • Devriendt C, De Sitter G, Vanlanduit S, Guillaume P (2009) Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements. Mech Syst Signal Process 23:621–635

    Article  Google Scholar 

  • Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, technical report LA-13070-MS, UC-900. Los Alamos National Laboratory, New Mexico

    Book  Google Scholar 

  • Ewins DJ (2000) Modal testing: theory, practice and application, 2nd edn. Research Studies Press Ltd., Baldock

    Google Scholar 

  • Fardis MN (1996) Experimental and numerical investigations on the seismic response of RC infilled frames and recommendations for code provisions. ECOEST/PREC8 report no. 6. LNEC, Lisbon

    Google Scholar 

  • Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Gentile C, Saisi A (2007) Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Const Build Mat 21(6):1311–1321

    Article  Google Scholar 

  • Gentile C, Saisi A (2013) Operational modal testing of historic structures at different levels of excitation. Const Build Mat. doi: 10.1016/j.conbuildmat.2013.01.013 (in press)

    Google Scholar 

  • Herlufsen H, Andersen P, Gade S, Møller N (2005) Identification techniques for operational modal analysis – an overview and practical experiences. In: Proc 1st international operational modal analysis conference, Copenhagen

    Google Scholar 

  • Hu W-H, Moutinho C, Caetano E, Magalhães F, Cunha A (2012) Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection. Mech Syst Signal Process 33:38–55

    Article  Google Scholar 

  • Jacobsen N-J, Andersen P, Brincker R (2007) Eliminating the influence of harmonic components in operational modal analysis. In: Proc XXV international modal analysis conference, Orlando

    Google Scholar 

  • Jaishi B, Ren W-X (2005) Structural finite element model updating using ambient vibration test results. ASCE J Struct Eng 131(4):617–628

    Article  Google Scholar 

  • Jeary AP (1986) Damping in tall buildings – a mechanism and a predictor. Earthq Eng Struct Dyn 14:733–750

    Article  Google Scholar 

  • Jeary AP (1997) Damping in structures. J Wind Eng Ind Aerodyn 72:345–355

    Article  Google Scholar 

  • Khatibi MM, Ashory MR, Malekjafarian A (2009) Scaling of mode shapes using mass-stiffness change method. In: Proc 3rd international operational modal analysis conference, Portonovo

    Google Scholar 

  • Lagomarsino S (1993) Forecast models for damping and vibration periods of buildings. J Wind Eng Ind Aerodyn 48:221–239

    Article  Google Scholar 

  • Lopez-Aenlle M, Fernandez P, Brincker R, Fernandez-Canteli A (2010) Scaling-factor estimation using an optimized mass-change strategy. Mech Syst Signal Process 24:3061–3074

    Article  Google Scholar 

  • Lopez-Aenlle M, Brincker R, Pelayo F, Fernandez-Canteli A (2012) On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change. J Sound Vib 331:622–637

    Article  Google Scholar 

  • Marseglia PS (2013) Comportamento sismico di volte in muratura, Ph.D. thesis, University of Salento, Lecce (in Italian)

    Google Scholar 

  • Ministero dei Beni e delle Attività Culturali (2010) Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale allineate alle nuove Norme tecniche per le costruzioni (D.M. 14 gennaio 2008), Circolare 26/2010. http://www.pabaac.beniculturali.it (in Italian)

  • Ministerio de Fomento (2002) Norma de Construcciòn Sismorresistente. Parte General y Edificaciòn (Spanish Standard, in Spanish)

    Google Scholar 

  • Modak SV, Rawal C, Kundra TK (2010) Harmonics elimination algorithm for operational modal analysis using random decrement technique. Mech Syst Signal Process 24:922–944

    Article  Google Scholar 

  • Mohanty P, Rixen DJ (2004) A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation. J Sound Vib 275:375–390

    Article  Google Scholar 

  • Mohanty P, Rixen DJ (2006) Modified ERA method for operational modal analysis in the presence of harmonic excitations. Mech Syst Signal Process 20:114–130

    Article  Google Scholar 

  • Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25(7):2275–2296

    Article  Google Scholar 

  • Mucciarelli M, Milutinovic Z, Gosar A, Herak M, Albarello D (2008) Assessment of seismic site amplification and seismic building vulnerabilità in the Republic of Macedonia, Croatia and Slovenia. In: Proc 14th world conference on earthquake engineering, Beijing

    Google Scholar 

  • Navarro M, Vidal F, Feriche M, Enomoto T, Sanchez FJ, Matsuda I (2004) Expected ground-RC building structures resonance phenomena in Granada city (Southern Spain). In: Proc 13rd world conference on earthquake engineering, Vancouver, BC

    Google Scholar 

  • Oliveira CS, Navarro M (2009) Fundamental periods of vibration of RC buildings in Portugal from in situ experimental and numerical techniques. Bull Earthq Eng 8(3):609–642

    Article  MathSciNet  Google Scholar 

  • Pandey AK, Biswas M (1994) Damage detection in structures using changes in flexibility. J Sound Vib 169(1):3–17

    Article  MATH  Google Scholar 

  • Panou AA, Theodulidis N, Hatzidimitriou P, Stylianidis K, Papazachos CB (2005) Ambient noise horizontal-to-vertical spectral ratio in site effects estimation and correlation with seismic damage distribution in urban environment: the case of the city of Thessaloniki (Northern Greece). Soil Dyn Earthq Eng 25:261–274

    Article  Google Scholar 

  • Parloo E, Verboven P, Guillaume P, Van Overmeire M (2002) Sensitivity-based operational mode shape normalization. Mech Syst Signal Process 16(5):757–767

    Article  Google Scholar 

  • Parloo E, Verboven P, Guillaume P, Van Overmeire M (2003) Force identification by means of in-operation modal models. J Sound Vib 262(1):161–173

    Article  Google Scholar 

  • Parloo E, Vanlanduit S, Guillaume P, Verboven P (2004) Increased reliability of reference-based damage identification techniques by using output-only data. J Sound Vib 270:813–832

    Article  Google Scholar 

  • Parloo E, Cauberghe B, Benedettini F, Alaggio R, Guillaume P (2005) Sensitivity-based operational mode shape normalisation: application to a bridge. Mech Syst Signal Process 19:43–55

    Article  Google Scholar 

  • Peeters B, Cornelis B, Janssens K, Van der Auweraer H (2007) Removing disturbing harmonics in operational modal analysis. In: Proc 2nd international operational modal analysis conference, Copenhagen

    Google Scholar 

  • Pridham BA, Wilson JC (2003) A study on errors in correlation-driven stochastic realization using short data sets. Prob Eng Mech 18:61–77

    Article  Google Scholar 

  • Qian S, Chen D (1996) Joint time-frequency analysis: methods and applications. PTR Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Rainieri C, Fabbrocino G (2010) Automated output-only dynamic identification of civil engineering structures. Mech Syst Signal Process 24(3):678–695

    Article  Google Scholar 

  • Rainieri C, Fabbrocino G, Cosenza E (2010a) Some remarks on experimental estimation of damping for seismic design of civil constructions. Shock Vib 17:383–395

    Article  Google Scholar 

  • Rainieri C, Fabbrocino G, Cosenza E (2010b) On damping experimental estimation. In: Proc 10th international conference on compuational structures technology, Valencia

    Google Scholar 

  • Rainieri C, Fabbrocino G, Cosenza E (2011) Integrated seismic early warning and structural health monitoring of critical civil infrastructures in seismically prone areas. Struct Health Monit 10:291–308

    Article  Google Scholar 

  • Rainieri C, Fabbrocino G, Manfredi G, Dolce M (2012) Robust output-only modal identification and monitoring of buildings in the presence of dynamic interactions for rapid post-earthquake emergency management. Eng Struct 34:436–446

    Article  Google Scholar 

  • Rainieri C, Fabbrocino G, Verderame GM (2013) Non-destructive characterization and dynamic identification of a modern heritage building for serviceability seismic analyses. NDT E Int 60:17–31

    Article  Google Scholar 

  • Reynders E, De Roeck G (2008) Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech Syst Signal Process 22:617–637

    Article  Google Scholar 

  • Reynders E, Pintelon R, De Roeck G (2008) Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech Syst Signal Process 22:948–969

    Article  Google Scholar 

  • Rosenow SE, Uhlenbrock S, Schlottmann G (2007) Parameter extraction of ship structures in presence of stochastic and harmonic excitations. In: Proc 2nd international operational modal analysis conference, Copenhagen

    Google Scholar 

  • Sepe V, Speranza E, Viskovic A (2008) A method for large-scale vulnerability assessment of historic towers. Struct Cont Health Monit 15:389–415

    Article  Google Scholar 

  • Tamura Y, Yoshida A, Zhang L, Ito T, Nakata S, Sato K (2005) Examples of modal identification of structures in Japan by FDD and MRD techniques. In: Proc 1st international operational modal analysis conference, Copenhagen

    Google Scholar 

  • Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rainieri, C., Fabbrocino, G. (2014). Applications. In: Operational Modal Analysis of Civil Engineering Structures. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0767-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0767-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0766-3

  • Online ISBN: 978-1-4939-0767-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics