Skip to main content

Nonlinear Acoustics in Fluids

  • Chapter
Book cover Springer Handbook of Acoustics

Part of the book series: Springer Handbooks ((SHB))

Abstract

At high sound intensities or long propagation distances at sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DC:

direct current

NLS:

nonlinear Schröinger

SBSL:

single-bubble sonoluminescence

SONAR:

sound navigation and ranging

TAO:

thermoacoustic oscillator

References

  1. M.F. Hamilton, D.T. Blackstock (Eds.): Nonlinear Acoustics (Academic, San Diego 1998)

    Google Scholar 

  2. K. Naugolnykh, L. Ostrovsky: Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge 1998)

    MATH  Google Scholar 

  3. R.T. Beyer: Nonlinear Acoustics (Acoust. Soc. Am., Woodbury 1997)

    Google Scholar 

  4. W. Lauterborn, T. Kurz, U. Parlitz: Experimental nonlinear physics, Int. J. Bifurc. Chaos 7, 2003–2033 (1997)

    MATH  Google Scholar 

  5. A.L. Thuras, R.T. Jenkins, H.T. OʼNeil: Extraneous frequencies generated in air carrying intense sound waves, J. Acoust. Soc. Am. 6, 173–180 (1935)

    MATH  ADS  Google Scholar 

  6. D.T. Blackstock, M.J. Crocker, D.G. Crighton, E.C. Everbach, M.A. Breazeale, A.B. Coppens, A.A. Atchley, M.F. Hamilton, W.E. Zorumski, W. Lauterborn, K.S. Suslick, L.A. Crum: Part II, Nonlinear Acoustics and Cavitation. In: Encyclopedia of Acoustics, Vol. 281, ed. by J. Crocker (Wiley, New York 1997) pp. 191–281

    Google Scholar 

  7. N.S. Bakhvalov, Y.M. Zhileikin, E.A. Zabolotskaya: Nonlinear Theory of Sound Beams (American Institute of Physics, Melville 1987)

    Google Scholar 

  8. B.K. Novikov, O.V. Rudenko, V.I. Timoshenko: Nonlinear Underwater Acoustics (American Institute of Physics, New York 1987)

    Google Scholar 

  9. O.V. Rudenko, S.I. Soluyan: Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, London 1977)

    MATH  Google Scholar 

  10. G.B. Whitham: Linear and Nonlinear Waves (Wiley, London 1974)

    MATH  Google Scholar 

  11. L.D. Rozenberg (Ed.): High-Intensity Ultrasonic Fields (Plenum, New York 1971)

    Google Scholar 

  12. M.F. Hamilton, D.T. Blackstock (Eds.): Frontiers of Nonlinear Acoustics (Elsevier, London 1990)

    MATH  Google Scholar 

  13. H. Hobaek (Ed.): Advances in Nonlinear Acoustics (World Scientific, Singapore 1993)

    Google Scholar 

  14. R.J. Wei (Ed.): Nonlinear Acoustics in Perspective (Nanjing Univ. Press, Nanjing 1996)

    Google Scholar 

  15. W. Lauterborn, T. Kurz (Eds.): Nonlinear Acoustics at the Turn of the Millennium (American Institute of Physics, Melville 2000)

    Google Scholar 

  16. O.V. Rudenko, O.A. Sapozhnikov (Eds.): Nonlinear Acoustics at the Beginning of the 21st Century (Faculty of Physics, Moscow State University, Moscow 2002)

    Google Scholar 

  17. A.A. Atchley, V.W. Sparrow, R.M. Keolian (Eds.): Innovations in Nonlinear Acoustics (American Institute of Physics, Melville 2006)

    Google Scholar 

  18. B.O. Enflo, M. Hedberg, L. Kari (Eds.): Nonlinear Acoustics – Fundamentals and Applications (American Institute of Physics, Melville 2008)

    MATH  Google Scholar 

  19. S. Makarov, M. Ochmann: Nonlinear and thermoviscous phenomena in acoustics, Part I, Acustica 82, 579–606 (1996)

    MATH  Google Scholar 

  20. S. Makarov, M. Ochmann: Nonlinear and thermoviscous phenomena in acoustics, Part II, Acustica 83, 197–222 (1997)

    MATH  Google Scholar 

  21. S. Makarov, M. Ochmann: Nonlinear and thermoviscous phenomena in acoustics, Part III, Acustica 83, 827–864 (1997)

    Google Scholar 

  22. C.E. Brennen: Cavitation and Bubble Dynamics (Oxford Univ. Press, Oxford 1995)

    Google Scholar 

  23. T.G. Leighton: The Acoustic Bubble (Academic, London 1994)

    Google Scholar 

  24. J.R. Blake, J.M. Boulton-Stone, N.H. Thomas (Eds.): Bubble Dynamics and Interface Phenomena (Kluwer, Dordrecht 1994)

    MATH  Google Scholar 

  25. F.R. Young: Cavitation (McGraw-Hill, London 1989)

    Google Scholar 

  26. L. van Wijngaarden (Ed.): Mechanics and Physics of Bubbles in Liquids (Martinus Nijhoff, The Hague 1982)

    MATH  Google Scholar 

  27. R.E. Apfel: Acoustic cavitation, Methods Exp. Phys. 19, 355–411 (1981)

    ADS  Google Scholar 

  28. W. Lauterborn (Ed.): Cavitation and Inhomogeneities in Underwater Acoustics (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  29. E.A. Neppiras: Acoustic cavitation, Phys. Rep. 61, 159–251 (1980)

    MathSciNet  ADS  Google Scholar 

  30. H.G. Flynn: Physics of acoustic cavitation. In: Physical Acoustics, ed. by P. Mason (Academic, New York 1964) pp. 57–172

    Google Scholar 

  31. W. Lauterborn, T. Kurz: Physics of bubble oscillations, Rep. Prog. Phys. 73, 106501 (2010)

    ADS  Google Scholar 

  32. W. Lauterborn, T. Kurz, R. Mettin, C.-D. Ohl: Experimental and theoretical bubble dynamics, Adv. Chem. Phys. 110, 295–380 (1999)

    Google Scholar 

  33. Z.C. Feng, L.G. Leal: Nonlinear bubble dynamics, Annu. Rev. Fluid Mech. 29, 201–243 (1997)

    MathSciNet  ADS  Google Scholar 

  34. J.R. Blake, D.C. Gibson: Cavitation bubbles near boundaries, Annu. Rev. Fluid Mech. 19, 99–123 (1987)

    ADS  Google Scholar 

  35. M.S. Plesset, A. Prosperetti: Bubble dynamics and cavitation, Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    ADS  Google Scholar 

  36. J. Olaf: Oberflächenreinigung mit Ultraschall (Surface cleaning with ultrasound), Acustica 7, 253–263 (1957)

    Google Scholar 

  37. H. Kuttruff: Ultrasonics – Fundamentals and Applications (Elsevier Applied Science, London 1991)

    MATH  Google Scholar 

  38. M.O. Lamminen, H.W. Walker, L.K. Weavers: Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes, J. Membr. Sci. 237, 213–223 (2004)

    Google Scholar 

  39. W. Kim, T.-H. Kim, J. Choi, H.-Y. Kim: Mechanism of particle removal by megasonic waves, Appl. Phys. Lett. 94, 081908 (2009)

    ADS  Google Scholar 

  40. F.R. Young: Sonoluminescence (CRC, Boca Raton 2005)

    Google Scholar 

  41. K.S. Suslick, D.J. Flannigan: Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation, Annu. Rev. Phys. Chem. 59, 659–683 (2008)

    ADS  Google Scholar 

  42. M.P. Brenner, S. Hilgenfeldt, D. Lohse: Single-bubble sonoluminescence, Rev. Mod. Phys. 74, 425–484 (2002)

    ADS  Google Scholar 

  43. D. Hammer, L. Frommhold: Sonoluminescence: How bubbles glow, J. Mod. Opt. 48, 239–277 (2001)

    ADS  Google Scholar 

  44. S.J. Putterman, K.R. Weninger: Sonoluminescence: How bubbles turn sound into light, Annu. Rev. Fluid Mech. 32, 445–476 (2000)

    ADS  Google Scholar 

  45. B.P. Barber, R.A. Hiller, R. Löfstedt, S.J. Putterman, K.R. Weninger: Defining the unknowns of sonoluminescence, Phys. Rep. 281, 65–143 (1997)

    ADS  Google Scholar 

  46. A.J. Walton, G.T. Reynolds: Sonoluminescence, Adv. Phys. 110, 595–660 (1984)

    ADS  Google Scholar 

  47. H. Kuttruff: Über den Zusammenhang zwischen der Sonolumineszenz und der Schwingungskavitation in Flüssigkeiten (On the relation between sonoluminescence and acoustic cavitation in liquids), Acustica 12, 230–254 (1962)

    Google Scholar 

  48. T.J. Mason, J.P. Lorimer: Applied Sonochemistry (Wiley-VCH, Weinheim 2002)

    Google Scholar 

  49. L.A. Crum, T.J. Mason, L. Reisse, K.S. Suslick (Eds.): Sonochemistry and Sonoluminescence (Kluwer, Dordrecht 1999)

    Google Scholar 

  50. K.S. Suslick: Sonochemistry, Science 247, 1439–1445 (1990)

    ADS  Google Scholar 

  51. K.S. Suslick (Ed.): Ultrasound: Its Chemical, Physical and Biological Effects (Wiley, New York 1988)

    Google Scholar 

  52. W. Lauterborn: Acoustic chaos. In: Encyclopedia of Physical Science and Technology, 3rd edn., ed. by R.A. Meyers (Academic, San Diego 2002) pp. 117–127

    Google Scholar 

  53. W. Lauterborn, J. Holzfuss: Acoustic chaos, Int. J. Bifurc. Chaos 1, 13–26 (1991)

    MATH  MathSciNet  Google Scholar 

  54. W. Lauterborn, U. Parlitz: Methods of chaos physics and their application to acoustics, J. Acoust. Soc. Am. 84, 1975–1993 (1988)

    MathSciNet  ADS  Google Scholar 

  55. W. Lauterborn: Nonlinear dynamics in acoustics, Acustica acta acustica Suppl. 1 82, S46–S55 (1996)

    Google Scholar 

  56. F.E. Fox, W.A. Wallace: Absorption of finite amplitude sound waves, J. Acoust. Soc. Am. 26, 994–1006 (1954)

    ADS  Google Scholar 

  57. R.T. Beyer: Parameter of nonlinearity in fluids, J. Acoust. Soc. Am. 32, 719–721 (1960)

    MathSciNet  ADS  Google Scholar 

  58. A.B. Coppens, R.T. Beyer, M.B. Seiden, J. Donohue, F. Guepin, R.H. Hodson, C. Townsend: Parameter of nonlinearity. II, J. Acoust. Soc. Am. 38, 797–804 (1965)

    ADS  Google Scholar 

  59. R.T. Beyer: Nonlinear Acoustics (Naval Ship Systems Command, Washington 1974), Table 3-1

    Google Scholar 

  60. E.C. Everbach: Tissue Composition Determination via Measurement of the Acoustic Nonlinearity Parameter B/A. Ph.D. Thesis (Yale Univ., New Haven 1989) p. 66

    Google Scholar 

  61. Z. Zhu, S. Roos, N. Cobb, K. Jensen: Determination of the acoustic nonlinearity parameter B/A from phase measurements, J. Acoust. Soc. Am. 74, 1518–1521 (1983)

    ADS  Google Scholar 

  62. X. Gong, Z. Zhu, T. Shi, J. Huang: Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods, J. Acoust. Soc. Am. 86, 1–5 (1989)

    ADS  Google Scholar 

  63. K. Law, A. Frizell, F. Dunn: Determination of the nonlinearity parameter B/A of biological media, Ultrasound Med. Biol. 11, 307–318 (1985)

    Google Scholar 

  64. J. Zhang, F. Dunn: A small volume thermodynamic system for B/A measurement, J. Acoust. Soc. Am. 89, 73–79 (1991)

    ADS  Google Scholar 

  65. F. Plantier, L. Daridon, B. Lagourette: Measurement of the B/A nonlinearity parameter under high pressure: Application to water, J. Acoust. Soc. Am. 111, 707–715 (2002)

    ADS  Google Scholar 

  66. E.C. Everbach: Parameters of nonlinearity of acoustic media. In: Encyclopedia of Acoustics, ed. by J. Crocker (Wiley, New York 1997) pp. 219–226

    Google Scholar 

  67. I. Rudnick: On the attenuation of finite amplitude waves in a liquid, J. Acoust. Soc. Am. 30, 564–567 (1958)

    ADS  Google Scholar 

  68. J. Banchet, J.D.N. Cheeke: Measurements of the acoustic nonlinearity parameter B/A in solvents: Dependence on chain length and sound velocity, J. Acoust. Soc. Am. 108, 2754–2758 (2000)

    ADS  Google Scholar 

  69. A.B. Coppens, R.T. Beyer, M.B. Seiden, J. Donohue, F. Guepin, R.H. Hodson, C. Townsend: Parameter of nonlinearity in fluids II, J. Acoust. Soc. Am. 38, 797–804 (1965)

    ADS  Google Scholar 

  70. O. Nomoto: Nonlinear parameter of the `Rao Liquidʼ, J. Phys. Soc. Jpn. 21, 569–571 (1966)

    ADS  Google Scholar 

  71. R.T. Beyer: Parameter of nonlinearity in fluids, J. Acoust. Soc. Am. 32, 719–721 (1960)

    MathSciNet  ADS  Google Scholar 

  72. K.L. Narayana, K.M. Swamy: Acoustic nonlinear parameter (B/A) in n-pentane, Acustica 49, 336–339 (1981)

    Google Scholar 

  73. S.K. Kor, U.S. Tandon: Scattering of sound by sound from Beyers (B/A) parameters, Acustica 28, 129–130 (1973)

    Google Scholar 

  74. K.M. Swamy, K.L. Narayana, P.S. Swamy: A study of (B/A) in liquified gases as a function of temperature and pressure from ultrasonic velocity measurements, Acustica 32, 339–341 (1975)

    Google Scholar 

  75. H.A. Kashkooli, P.J. Dolan Jr., C.W. Smith: Measurement of the acoustic nonlinearity parameter in water, methanol, liquid nitrogen, and liquid helium-II by two different methods: A comparison, J. Acoust. Soc. Am. 82, 2086–2089 (1987)

    ADS  Google Scholar 

  76. R.T. Beyer: The parameter B/A. In: Nonlinear Acoustics, ed. by M.F. Hamilton, D.T. Blackstock (Academic, San Diego 1998) pp. 25–39

    Google Scholar 

  77. L. Bjørnø: Acoustic nonlinearity of bubbly liquids, Appl. Sci. Res. 38, 291–296 (1982)

    MATH  Google Scholar 

  78. J. Wu, Z. Zhu: Measurement of the effective nonlinearity parameter B/A of water containing trapped cylindrical bubbles, J. Acoust. Soc. Am. 89, 2634–2639 (1991)

    ADS  Google Scholar 

  79. M.P. Hagelberg, G. Holton, S. Kao: Calculation of B/A for water from measurements of ultrasonic velocity versus temperature and pressure to 10 000 kg/cm2, J. Acoust. Soc. Am. 41, 564–567 (1967)

    ADS  Google Scholar 

  80. B. Riemann: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (On the propagation of plane waves of finite amplitude), Abhandl. Ges. Wiss. Göttingen 8, 43–65 (1860), in German

    Google Scholar 

  81. S. Earnshaw: On the mathematical theory of sound, Philos. Trans. R. Soc. London 150, 133–148 (1860)

    Google Scholar 

  82. D.T. Blackstock: Propagation of plane sound waves of finite amplitude in nondissipative fluids, J. Acoust. Soc. Am. 34, 9–30 (1962)

    MathSciNet  ADS  Google Scholar 

  83. M.F. Hamilton, D.T. Blackstock: On the coefficient of nonlinearity β in nonlinear acoustics, J. Acoust. Soc. Am. 83, 74–77 (1988), , Erratum, ibid, p. 1976

    ADS  Google Scholar 

  84. D.G. Crighton: Propagation of finite-amplitude waves in fluids. In: Encyclopedia of Acoustics, ed. by J. Crocker (Wiley, New York 1997) pp. 203–218

    Google Scholar 

  85. E. Fubini Ghiron: Anomalie nella propagazione di onde acustiche di grande ampiezza (Anomalies in the propagation of acoustic waves of large amplitude), Alta Frequenza 4, 530–581 (1935)

    Google Scholar 

  86. W. Keck, R.T. Beyer: Frequency spectrum of finite amplitude ultrasonic waves in liquids, Phys. Fluids 3, 346–352 (1960)

    MathSciNet  ADS  Google Scholar 

  87. L.E. Hargrove: Fourier series for the finite amplitude sound waveform in a dissipationless medium, J. Acoust. Soc. Am. 32, 511–512 (1960)

    ADS  Google Scholar 

  88. B.D. Cook: New procedure for computing finite-amplitude distortion, J. Acoust. Soc. Am. 34, 941–946 (1962), see also the footnote on page 312 of 8.1

    ADS  Google Scholar 

  89. D.T. Blackstock: Nonlinear acoustics (theoretical). In: American Institute of Physics Handbook, 3rd edn., ed. by D.E. Gray (McGraw Hill, New York 1972) pp. 3/183–3/205

    Google Scholar 

  90. A. Hirschberg, J. Gilbert, R. Msallam, A.P.J. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. 99, 1754–1758 (1996)

    ADS  Google Scholar 

  91. M.J. Lighthill: Viscosity effects in sound waves of finite amplitude. In: Surveys in Mechanics, ed. by G.K. Batchelor, R.M. Davies (Cambridge Univ. Press, Cambridge 1956) pp. 249–350

    Google Scholar 

  92. J. Lighthill: Waves in Fluids (Cambridge Univ. Press, Cambridge 1980)

    Google Scholar 

  93. J.S. Mendousse: Nonlinear dissipative distortion of progressive sound waves at moderate amplitudes, J. Acoust. Soc. Am. 25, 51–54 (1953)

    ADS  Google Scholar 

  94. Z.A. Golʼdberg: Second approximation acoustic equations and the propagation of plane waves of finite amplitude, Sov. Phys.-Acoust. 2, 346–350 (1956)

    Google Scholar 

  95. D.T. Blackstock: Thermoviscous attenuation of plane, periodic, finite amplitude sound waves, J. Acoust. Soc. Am. 36, 534–542 (1964)

    ADS  Google Scholar 

  96. E. Hopf: The partial differential equation u t  + uu x  = μu xx , Comm. Pure Appl. Math. 3, 201–230 (1950)

    MATH  MathSciNet  Google Scholar 

  97. J.D. Cole: On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9, 225–236 (1951)

    MATH  MathSciNet  Google Scholar 

  98. M. Abramowitz, I.A. Stegun (Eds.): Handbook of Mathematical Functions (Dover, New York 1970)

    Google Scholar 

  99. L.S. Gradsteyn, I.M. Ryshik: Table of Integrals, Series and Products (Academic, Orlando 1980)

    Google Scholar 

  100. D.T. Blackstock: Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude, J. Acoust. Soc. Am. 39, 1019–1026 (1966)

    MATH  MathSciNet  ADS  Google Scholar 

  101. R.D. Fay: Plane sound waves of finite amplitude, J. Acoust. Soc. Am. 3, 222–241 (1931)

    ADS  Google Scholar 

  102. R.V. Khokhlov, S.I. Soluyan: Propagation of acoustic waves of moderate amplitude through dissipative and relaxing media, Acustica 14, 241–246 (1964)

    MATH  Google Scholar 

  103. C. Chaussy (Ed.): Extracorporeal Shock Wave Lithotripsy (Karger, New York 1986)

    Google Scholar 

  104. G.A. Askarʼyan: Self-focusing of powerful sound during the production of bubbles, J. Exp. Theor. Phys. Lett. 13, 283–284 (1971)

    Google Scholar 

  105. P. Ciuti, G. Iernetti, M.S. Sagoo: Optical visualization of non-linear acoustic propagation in cavitating liquids, Ultrasonics 18, 111–114 (1980)

    Google Scholar 

  106. Y.A. Kobelev, L.A. Ostrovsky: Nonlinear acoustic phenomena due to bubble drift in a gas-liquid mixture, J. Acoust. Soc. Am. 85, 621–627 (1989)

    ADS  Google Scholar 

  107. S.L. Lopatnikov: Acoustic phase echo in liquid with gas bubbles, Sov. Tech. Phys. Lett. 6, 270–271 (1980)

    Google Scholar 

  108. I.S. Akhatov, V.A. Baikov: Propagation of sound perturbations in heterogeneous gas-liquid systems, J. Eng. Phys. 9, 276–280 (1986)

    Google Scholar 

  109. I.S. Akhatov, V.A. Baikov, R.A. Baikov: Propagation of nonlinear waves in gas-liquid media with a gas content variable in space, Fluid Dyn. 7, 161–164 (1986)

    ADS  Google Scholar 

  110. E. Zabolotskaya: Nonlinear waves in liquid with gas bubbles, Trudi IOFAN (Institute of General Physics of the Academy of Sciences, Moscow) 18, 121–155 (1989)

    MathSciNet  Google Scholar 

  111. I.S. Akhatov, U. Parlitz, W. Lauterborn: Pattern formation in acoustic cavitation, J. Acoust. Soc. Am. 96, 3627–3635 (1994)

    ADS  Google Scholar 

  112. I.S. Akhatov, U. Parlitz, W. Lauterborn: Towards a theory of self-organization phenomena in bubble-liquid mixtures, Phys. Rev. E 54, 4990–5003 (1996)

    ADS  Google Scholar 

  113. O.A. Druzhinin, L.A. Ostrovsky, A. Prosperetti: Low-frequency acoustic wave generation in a resonant bubble-layer, J. Acoust. Soc. Am. 100, 3570–3580 (1996)

    ADS  Google Scholar 

  114. L.A. Ostrovsky, A.M. Sutin, I.A. Soustova, A.I. Matveyev, A.I. Potapov: Nonlinear, low-frequency sound generation in a bubble layer: Theory and laboratory experiment, J. Acoust. Soc. Am. 104, 722–726 (1998)

    ADS  Google Scholar 

  115. R.I. Nigmatulin: Dynamics of Multiphase Systems (Hemisphere, New York 1991)

    Google Scholar 

  116. V.E. Nakoryakov, V.G. Pokusaev, I.R. Shreiber: Propagation of Waves in Gas- and Vapour-liquid Media (Institute of Thermophysics, Novosibirsk 1983)

    Google Scholar 

  117. L. van Wijngaarden: One-dimensional flow of liquids containing small gas bubbles, Ann. Rev. Fluid Mech. 4, 369–396 (1972)

    ADS  Google Scholar 

  118. U. Parlitz, R. Mettin, S. Luther, I.S. Akhatov, M. Voss, W. Lauterborn: Spatiotemporal dynamics of acoustic cavitation bubble clouds, Philos. Trans. R. Soc. A 357, 313–334 (1999)

    ADS  Google Scholar 

  119. J.G. McDaniel, I.S. Akhatov, R.G. Holt: Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution, Phys. Fluids 14, 1886–1984 (2002)

    ADS  Google Scholar 

  120. I.S. Akhatov, R.I. Nigmatulin, R.T. Lahey Jr.: The analysis of linear and nonlinear bubble cluster dynamics, Multiphase Sci. Technol. 17, 225–256 (2005)

    Google Scholar 

  121. A. Prosperetti, A. Lezzi: Bubble dynamics in a compressible liquid. Part 1. First order theory, J. Fluid Mech. 168, 457–478 (1986)

    MATH  ADS  Google Scholar 

  122. R.I. Nigmatulin, I.S. Akhatov, N.K. Vakhitova, R.T. Lahey Jr.: On the forced oscillations of a small gas bubble in a spherical liquid-filled flask, J. Fluid Mech. 414, 47–73 (2000)

    MATH  ADS  Google Scholar 

  123. A. Jeffrey, T. Kawahara: Asymptotic Methods in Nonlinear Wave Theory (Pitman, London 1982)

    MATH  Google Scholar 

  124. L. van Wijngaarden: On the equations of motion for mixtures of fluid and gas bubbles, J. Fluid Mech. 33, 465–474 (1968)

    MATH  ADS  Google Scholar 

  125. N.A. Gumerov: Propagation of long waves of finite amplitude in a liquid with polydispersed gas bubbles, J. Appl. Mech. Tech. Phys. 1, 79–85 (1992)

    ADS  Google Scholar 

  126. A. Hasegawa: Plasma Instabilities and Nonlinear Effects (Springer, Berlin, Heidelberg 1975)

    Google Scholar 

  127. N.A. Gumerov: The weak non-linear fluctuations in the radius of a condensed drop in an acoustic field, J. Appl. Math. Mech. (PMM U.S.S.R.) 53, 203–211 (1989)

    MATH  MathSciNet  Google Scholar 

  128. N.A. Gumerov: Weakly non-linear oscillations of the radius of a vapour bubble in an acoustic field, J. Appl. Math. Mech. 55, 205–211 (1991)

    MATH  Google Scholar 

  129. N.A. Gumerov: On quasi-monochromatic weakly nonlinear waves in a low-dissipative bubbly liquid, J. Appl. Math. Mech. 56, 50–59 (1992)

    MathSciNet  Google Scholar 

  130. S. Gavrilyuk: Large amplitude oscillations and their "thermodynamics" for continua with ``memoryʼʼ, Euro. J. Mech. B/Fluids 13, 753–764 (1994)

    MATH  MathSciNet  Google Scholar 

  131. S.L. Gavrilyuk, V.M. Teshukov: Generalized vorticity for bubbly liquid and dispersive shallow water equations, Continuum Mech. Thermodyn. 13, 365–382 (2001)

    MATH  MathSciNet  ADS  Google Scholar 

  132. L.F. McGoldrick: Resonant interactions among capillary-gravity waves, J. Fluid Mech. 21, 305–331 (1965)

    MATH  MathSciNet  ADS  Google Scholar 

  133. D.J. Benney: A general theory for interactions between long and short waves, Stud. Appl. Math. 56, 81–94 (1977)

    MATH  MathSciNet  Google Scholar 

  134. I.S. Akhatov, D.B. Khismatulin: Effect of dissipation on the interaction between long and short waves in bubbly liquids, Fluid Dyn. 35, 573–583 (2000)

    MATH  ADS  Google Scholar 

  135. I.S. Akhatov, D.B. Khismatulin: Two-dimensional mechanisms of interaction between ultrasound and sound in bubbly liquids: Interaction equations, Acoust. Phys. 47, 10–15 (2001)

    ADS  Google Scholar 

  136. I.S. Akhatov, D.B. Khismatulin: Mechanisms of interaction between ultrasound and sound in liquids with bubbles: Singular focusing, Acoust. Phys. 47, 140–144 (2001)

    ADS  Google Scholar 

  137. D.B. Khismatulin, I.S. Akhatov: Sound – ultrasound interaction in bubbly fluids: Theory and possible applications, Phys. Fluids 13, 3582–3598 (2001)

    ADS  Google Scholar 

  138. V.E. Zakharov: Collapse of Langmuir waves, Sov. Phys. J. Exp. Theor. Phys. 72, 908–914 (1972)

    ADS  Google Scholar 

  139. D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy: An experimental investigation of acoustic cavitation and sonoluminescence from a single bubble, J. Acoust. Soc. Am. 91, 3166–3183 (1992)

    ADS  Google Scholar 

  140. K. Bjerknes: Fields of Force (Columbia Univ. Press, New York 1906)

    Google Scholar 

  141. A. Eller: Force on a buble in a standing acoustic wave, J. Acoust. Soc. Am. 43, 170–171 (1968)

    ADS  Google Scholar 

  142. L.A. Crum, I. Eller: Motion of bubbles in a stationary sound field, J. Acoust. Soc. Am. 48, 181–189 (1970)

    ADS  Google Scholar 

  143. L.A. Crum, D.A. Nordling: Velocity of transient cavities in an acoustic stationary wave, J. Acoust. Soc. Am. 48, 294–301 (1972)

    Google Scholar 

  144. L.A. Crum: Bjerknes forces on bubbles in a stationary sound field, J. Acoust. Soc. Am. 57, 1363–1370 (1975)

    ADS  Google Scholar 

  145. T. Watanabe, Y. Kukita: Translational and radial motions of a bubble in an acoustic standing wave field, Phys. Fluids A 5, 2682–2688 (1993)

    ADS  Google Scholar 

  146. T.J. Matula, S.M. Cordry, R.A. Roy, L.A. Crum: Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions, J. Acoust. Soc. Am. 102, 1522–1527 (1997)

    ADS  Google Scholar 

  147. I.S. Akhatov, R. Mettin, C.-D. Ohl, U. Parlitz, W. Lauterborn: Bjerknes force threshold for stable single bubble sonoluminescence, Phys. Rev. E 55, 3747–3750 (1997)

    ADS  Google Scholar 

  148. O. Louisnard: Analytical expressions for primary Bjerknes force on inertial cavitation bubbles, Phys. Rev. E 78, 036322 (2008)

    ADS  Google Scholar 

  149. R. Mettin, A.A. Doinikov: Translational instability of a spherical bubble in a standing ultrasonic wave, Appl. Acoust. 70, 1330–1339 (2009)

    Google Scholar 

  150. L.A. Crum: Rectified diffusion, Ultrasonics 22, 215–223 (1984)

    Google Scholar 

  151. M.M. Fyrillas, A.J. Szeri: Dissolution or growth of oscillating bubbles, J. Fluid Mech. 277, 381–407 (1994)

    MATH  ADS  Google Scholar 

  152. I. Akhatov, N. Gumerov, C-D. Ohl, U. Parlitz, W. Lauterborn: The role of surface tension in stable single-bubble sonoluminescence, Phys. Rev. Lett. 78, 227–230 (1997)

    ADS  Google Scholar 

  153. M.S. Plesset: On the stability of fluid flows with spherical symmetry, J. Appl. Phys. 25, 96–98 (1954)

    MATH  MathSciNet  ADS  Google Scholar 

  154. W. Strube: Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen (Numerical investigations on the stability of nonspherically oscillating bubbles), Acustica 25, 289–303 (1971)

    Google Scholar 

  155. A. Prosperetti: Viscous effects on perturbed spherical flow, Q. Appl. Math. 34, 339–352 (1977)

    MATH  Google Scholar 

  156. M.P. Brenner, D. Lohse, T.F. Dupont: Bubble shape oscillations and the onset of sonoluminescence, Phys. Rev. Lett. 75, 954–957 (1995)

    ADS  Google Scholar 

  157. S. Hilgenfeldt, D. Lohse, M.P. Brenner: Phase diagrams for sonoluminescing bubbles, Phys. Fluids 8, 2808–2826 (1996)

    MATH  ADS  Google Scholar 

  158. R. Toegel, D. Lohse: Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory, J. Chem. Phys. 118, 1863–1875 (2003)

    ADS  Google Scholar 

  159. P. Koch, T. Kurz, U. Parlitz, W. Lauterborn: Bubble dynamics in a standing sound field: The bubble habitat, J. Acoust. Soc. Am. 130, 3370–3378 (2011)

    ADS  Google Scholar 

  160. D. Krefting, R. Mettin, W. Lauterborn: Single-bubble sonoluminescence in air-saturated water, Phys. Rev. Lett. 91, 174301 (2003)

    ADS  Google Scholar 

  161. Y. Tian, J.A. Ketterling, R.E. Apfel: Direct observations of microbubble oscillations, J. Acoust. Soc. Am. 100, 3976–3978 (1996)

    ADS  Google Scholar 

  162. J. Holzfuss, M. Rüggeberg, A. Billo: Shock wave emission of a sonoluminescing bubble, Phys. Rev. Lett. 81, 5434–5437 (1998)

    ADS  Google Scholar 

  163. R. Pecha, B. Gompf: Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale, Phys. Rev. Lett. 84, 1328–1330 (2000)

    ADS  Google Scholar 

  164. E. Heim: Über das Zustandekommen der Sonolumineszenz (On the origin of sonoluminescence), Proc. 3rd Int. Congr. Acoustics, Stuttgart, 1959, ed. by L. Cremer (Elsevier, Amsterdam 1961) pp. 343–346

    Google Scholar 

  165. C.C. Wu, P.H. Roberts: A model of sonoluminescence, Proc. R. Soc. A 445, 323–349 (1994)

    ADS  Google Scholar 

  166. W.C. Moss, D.B. Clarke, D.A. Young: Calculated pulse widths and spectra of a single sonoluminescing bubble, Science 276, 1398–1401 (1997)

    Google Scholar 

  167. V.Q. Vuong, A.J. Szeri, D.A. Young: Shock formation within sonoluminescence bubbles, Phys. Fluids 11, 10–17 (1999)

    MATH  ADS  Google Scholar 

  168. B. Metten, W. Lauterborn: Molecular dynamics approach to single-bubble sonoluminescence. In: Nonlinear Acoustics at the Turn of the Millennium, ed. by W. Lauterborn, T. Kurz (Am. Inst. Physics, Melville 2000) pp. 429–432

    Google Scholar 

  169. B. Metten: Molekulardynamik-Simulationen zur Sonolumineszenz, Dissertation. Ph.D. Thesis (Georg-August Univ., Göttingen 2000)

    Google Scholar 

  170. S.J. Ruuth, S. Putterman, B. Merriman: Molecular dynamics simulation of the response of a gas to a spherical piston: Implication for sonoluminescence, Phys. Rev. E 66, 036310 (2002)

    ADS  Google Scholar 

  171. W. Lauterborn, T. Kurz, B. Metten, R. Geisler, D. Schanz: Molecular dynamics approach to sonoluminescent bubbles. In: Theoretical and Computational Acoustics 2003, ed. by A. Tolstoy, Y.-C. Teng, E.C. Shang (World Scientific, Hackensack 2004) pp. 233–243

    Google Scholar 

  172. W. Lauterborn, T. Kurz, R. Geisler, D. Kröninger, D. Schanz: The single bubble – a hot microlaboratory. In: Oscillations, Waves and Interactions, ed. by T. Kurz, U. Parlitz, U. Kaatze (Universitätsverlag Göttingen, Göttingen 2007) pp. 139–170

    Google Scholar 

  173. D. Schanz: Molekulardynamische Untersuchungen zur Binnendynamik kollabierender Blasen (Molecular dynamics simulation of the inner dynamics of collapsing bubbles), Dissertation. Ph.D. Thesis (Georg-August Univ., Göttingen 2008)

    Google Scholar 

  174. A. Bass, S.J. Ruuth, C. Camara, B. Merriman, S. Putterman: Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble, Phys. Rev. Lett. 101, 234301 (2008)

    ADS  Google Scholar 

  175. D. Schanz, B. Metten, T. Kurz, W. Lauterborn: Molecular dynamics simulation of cavitation bubble collapse and sonoluminescence, New J. Phys. 14, 113019 (2012)

    ADS  Google Scholar 

  176. K.R. Weninger, C.G. Camara, S.J. Putterman: Observation of bubble dynamics within luminescent cavitation clouds: Sonoluminescence at the nanoscale, Phys. Rev. E 63, 016310 (2000)

    ADS  Google Scholar 

  177. C. Camara, S.J. Putterman, E. Kirilov: Sonoluminescence from a single bubble driven at 1 Megahertz, Phys. Rev. Lett. 92, 124301 (2004)

    ADS  Google Scholar 

  178. B.D. Storey, A.J. Szeri: Mixture segregation within sonoluminescence bubbles, J. Fluid Mech. 396, 203–221 (1999)

    MATH  ADS  Google Scholar 

  179. K. Yasui: Segregation of vapor and gas in a sonoluminescing bubble, Ultrasonics 40, 643–647 (2002)

    Google Scholar 

  180. R. Toegel, B. Gompf, R. Pecha, D. Lohse: Does water vapor prevent upscaling sonoluminescence?, Phys. Rev. Lett. 85, 3165–3168 (2000)

    ADS  Google Scholar 

  181. M. Ashokkumar, L.A. Crum, C.A. Frensley, F. Grieser, T.J. Matula, W.B. McNamara III, K.S. Suslick: Effect of solutes on single-bubble sonoluminescence in water, J. Phys. Chem. A 104, 8462–8465 (2000)

    Google Scholar 

  182. T. Lepoint, F. Lepoint-Mullie, S. Labouret, J. Frohly, C. Petrier, M. Comet, H. Fuzellier: Multibubble sonoluminescence: A symbiosis between chemistry and physics, Proc. ESS8 Conf. Villasimius, Italy (2002) pp. 9a–9c

    Google Scholar 

  183. A. Troia, D.M. Ripa, R. Spagnolo: Moving single bubble sonoluminescence in phosphoric acid and sulphuric acid solutions, Ultrason. Sonochem. 13, 278–282 (2006)

    Google Scholar 

  184. A. Chakravarty, T. Georghiou, T.E. Phillipson, A.J. Walton: Stable sonoluminescence within a water hammer tube, Phys. Rev. E 69, 066317 (2004)

    ADS  Google Scholar 

  185. D.J. Flannigan, K.S. Suslick: Plasma formation and temperature measurement during single-bubble cavitation, Nature 434, 52–55 (2005)

    ADS  Google Scholar 

  186. D.J. Flannigan, K.S. Suslick: Molecular and atomic emission during single-bubble cavitation in concentrated sulfuric acid, Acoust. Res. Lett. Online 6, 157–161 (2005)

    Google Scholar 

  187. D.J. Flannigan, K.S. Suslick: Plasma line emission during single-bubble cavitation, Phys. Rev. Lett. 95, 044301 (2005)

    ADS  Google Scholar 

  188. S.D. Hopkins, S.J. Putterman, B.A. Kappus, K.S. Suslick, C.G. Camara: Dynamics of a sonoluminescing bubble in sulfuric acid, Phys. Rev. Lett. 95, 254301 (2005)

    ADS  Google Scholar 

  189. G.F. Puente, P. García-Martínez, F.J. Bonetto: Single-bubble sonoluminescence in sulfuric acid and water: Bubble dynamics, stability, and continuous spectra, Phys. Rev. E 75, 016314 (2007)

    ADS  Google Scholar 

  190. D.J. Flannigan, S.D. Hopkins, C.G. Camara, S.J. Putterman, K.S. Suslick: Measurement of pressure and density inside a single sonoluminescing bubble, Phys. Rev. Lett. 96, 204301 (2006)

    ADS  Google Scholar 

  191. Y. An: Mechanism of single-bubble sonoluminescence, Phys. Rev. E 74, 026304 (2006)

    ADS  Google Scholar 

  192. J. Xu, W. Chen, X. Xu, Y. Liang, W. Huang, X. Gao: Composition and its evolution inside a sonoluminescing bubble by line spectra, Phys. Rev. E 76, 026308 (2007)

    ADS  Google Scholar 

  193. D.J. Flannigan, K.S. Suslick: Emission from electronically excited metal atoms during single-bubble sonoluminescence, Phys. Rev. Lett. 99, 134301 (2007)

    ADS  Google Scholar 

  194. R. Urteaga, D.H. Dellavale, G.F. Puente, F.J. Bonetto: Positional stability as the light emission limit in sonoluminescence with sulfuric acid, Phys. Rev. E 76, 056317 (2007)

    ADS  Google Scholar 

  195. R. Urteaga, F.J. Bonetto: Trapping an intensely bright, stable sonoluminescing bubble, Phys. Rev. Lett. 100, 074302 (2008)

    ADS  Google Scholar 

  196. W. Chen, W. Huang, Y. Liang, X. Gao, W. Cui: Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera, Phys. Rev. E 78, 035301 (2008)

    ADS  Google Scholar 

  197. W. Huang, W. Chen, W. Cui: Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of a streak camera, J. Acoust. Soc. Am. 125, 3579–3600 (2009)

    Google Scholar 

  198. A. Moshaii, K. Imani, M. Silatani: Sonoluminescence radition from different concentrations of sulfuric acid, Phys. Rev. E 80, 046325 (2009)

    ADS  Google Scholar 

  199. Y. An, C. Li: Diagnosing temperature change inside sonoluminescing bubbles by calculating line spectra, Phys. Rev. E 80, 046302 (2009)

    ADS  Google Scholar 

  200. D.J. Flannigan, K.S. Suslick: Inertially confined plasma in an imploding bubble, Nature Phys. 6, 598–601 (2010)

    ADS  Google Scholar 

  201. K.S. Suslick, N.C. Eddingsaas, D.J. Flannigan, S.D. Hopkins, H. Xu: Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe, Ultrason. Sonochem. 18, 842–846 (2011)

    Google Scholar 

  202. F.A. Godínez, M. Navarrete: Influence of liquid density on the parametric shape instability of sonoluminescence bubbles in water and sulfuric acid, Phys. Rev. E 84, 016312 (2011)

    ADS  Google Scholar 

  203. A. Moshaii, S. Tajik-Nezhad, M. Faraji: Temperature dependency of single-bubble sonoluminescence in sulfuric acid, Phys. Rev. E 84, 046301 (2011)

    ADS  Google Scholar 

  204. K. Imani, F. Bemani, M. Silatani, R. Sadighi-Bonabi: Ambient temperature effect on single-bubble sonoluminescence in different concentrations of sulfuric acid solutions, Phys. Rev. E 85, 016329 (2012)

    ADS  Google Scholar 

  205. R. Urteaga, P.L. García-Martínez, F.J. Bonetto: Dynamics of sonoluminescing bubbles within a liquid hammer device, Phys. Rev. E 79, 016306 (2009)

    ADS  Google Scholar 

  206. H. Xu, K.S. Suslick: Molecular emission and temperature measurements from single bubble sonoluminescence, Phys. Rev. Lett. 104, 244301 (2010)

    ADS  Google Scholar 

  207. G.L. Sharipov, A.M. Abdrakhmanov, L.R. Zagretdinova: Multi-bubble sonoluminescence of phosphoric acid, Techn. Phys. 55, 1609–1613 (2010)

    ADS  Google Scholar 

  208. B. Kappus, S. Khalid, A. Chakravarty, S. Putterman: Phase transition to an opaque plasma in a sonoluminescing bubble, Phys. Rev. Lett. 106, 234302 (2011)

    ADS  Google Scholar 

  209. A. Moshaii, M. Faraji, S. Tajik-Nezhad: Study of single bubble sonoluminescence in phosphoric acid, Ultrason. Sonochem. 18, 1148–1152 (2011)

    Google Scholar 

  210. B. Kappus, S. Khalid, S. Putterman: 100-watt sonoluminescence generated by 2.5-atmosphere-pressure pulses, Phys. Rev. E 83, 056304 (2011)

    ADS  Google Scholar 

  211. S. Khalid, B. Kappus, K.R. Weninger, S.J. Putterman: Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid, Phys. Rev. Lett. 108, 104302 (2012)

    ADS  Google Scholar 

  212. G. Vazquez, C. Camara, S. Putterman, K. Weninger: Sonoluminescence: Natureʼs smalles blackbody, Opt. Lett. 26, 575–577 (2001)

    ADS  Google Scholar 

  213. C.-D. Ohl, O. Lindau, W. Lauterborn: Luminescence from spherically and aspherically collapsing laser induced bubbles, Phys. Rev. Lett. 80, 393–396 (1998)

    ADS  Google Scholar 

  214. J. Magnaudet, D. Legendre: The viscous drag force on a spherical bubble with a time-dependent radius, Phys. Fluids 10, 550–554 (1998)

    ADS  Google Scholar 

  215. R. Toegel, S. Luther, D. Lohse: Viscosity destabilizes sonoluminescing bubbles, Phys. Rev. Lett. 96, 114301 (2006)

    ADS  Google Scholar 

  216. C.F. Moon: Chaotic and Fractal Dynamics (Wiley, New York 1992)

    Google Scholar 

  217. H.G. Schuster: Deterministic Chaos, 2nd edn. (VCH, Weinheim 1988)

    Google Scholar 

  218. J.M.T. Thompson, H.B. Stewart: Nonlinear Dynamics and Chaos (Wiley, Chichester 1986)

    MATH  Google Scholar 

  219. P. Bergé, Y. Pomeau, C. Vidal: Order within Chaos: Towards a Deterministic Approach to Turbulence (Wiley, New York 1984)

    MATH  Google Scholar 

  220. N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw: Geometry from a time series, Phys. Rev. Lett. 45, 712–716 (1980)

    ADS  Google Scholar 

  221. F. Takens: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, ed. by D.A. Rand, L.-S. Young (Springer, Berlin, Heidelberg 1981) pp. 366–381

    Google Scholar 

  222. T. Sauer, A. Yorke, M. Casdagli: Embedology, J. Statist. Phys. 65, 579–616 (1991)

    MATH  MathSciNet  ADS  Google Scholar 

  223. H.D.I. Abarbanel: Analysis of Observed Chaotic Data (Springer, Berlin, Heidelberg 1996)

    MATH  Google Scholar 

  224. H. Kantz, T. Schreiber: Nonlinear Time Series Analysis (Cambridge Univ. Press, Cambridge 1997)

    MATH  Google Scholar 

  225. U. Parlitz: Nonlinear time serie analysis. In: Nonlinear Modeling – Advanced Black Box Techniques, ed. by J.A.K. Suykens, J. Vandewalle (Kluwer, Dordrecht 1998) pp. 209–239

    Google Scholar 

  226. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano: Determining Lyapunov exponents from a time series, Physica D 16, 285–317 (1985)

    MATH  MathSciNet  ADS  Google Scholar 

  227. K. Geist, U. Parlitz, W. Lauterborn: Comparison of different methods for computing Lyapunov exponents, Prog. Theor. Phys. 83, 875–893 (1990)

    MATH  MathSciNet  ADS  Google Scholar 

  228. U. Parlitz: Identification of true and spurious Lyapunov exponents from time series, Int. J. Bifurc. Chaos 2, 155–165 (1992)

    MATH  MathSciNet  Google Scholar 

  229. W. Lauterborn, E. Cramer: Subharmonic route to chaos observed in acoustics, Phys. Rev. Lett. 47, 1445–1448 (1981)

    ADS  Google Scholar 

  230. W. Lauterborn, A. Koch: Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation, Phys. Rev. A 35, 1774–1976 (1987)

    ADS  Google Scholar 

  231. R.G. Holt, D.F. Gaitan, A. Atchley, J. Holzfuss: Chaotic sonoluminescence, Phys. Rev. Lett. 72, 1376–1379 (1994)

    ADS  Google Scholar 

  232. J.S. Dam, M.T. Levinsen, M. Skogstad: Period-doubling bifurcation from breaking the spherical symmetry in sonoluminescence, Phys. Rev. Lett. 89, 084303 (2002)

    ADS  Google Scholar 

  233. J.S. Dam, M.T. Levinsen, M. Skogstad: Stable nonspherical bubble collapse including period doubling in sonoluminescence, Phys. Rev. E 67, 026303 (2003)

    ADS  Google Scholar 

  234. M.T. Levinsen, N. Weppenaar, J.S. Dam, G. Simon, M. Skogstad: Direct observation of period-doubled nonspherical states in single-bubble sonoluminescence, Phys. Rev. E 68, 053303 (2003), (R)

    Google Scholar 

  235. J.S. Dam, M.T. Levinsen: Second mode of recycling together with period doubling links single-bubble and multibubble sonoluminescence, Phys. Rev. Lett. 94, 174301 (2005)

    ADS  Google Scholar 

  236. J. Holzfuss: Surface wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence, Phys. Rev. E 77, 066309 (2008)

    ADS  Google Scholar 

  237. W. Lauterborn, E. Suchla: Bifurcation superstructure in a model of acoustic turbulence, Phys. Rev. Lett. 53, 2304–2307 (1984)

    ADS  Google Scholar 

  238. U. Parlitz, V. Englisch, C. Scheffczyk, W. Lauterborn: Bifurcation structure of bubble oscillators, J. Acoust. Soc. Am. 88, 1061–1077 (1990)

    MathSciNet  ADS  Google Scholar 

  239. C. Scheffczyk, U. Parlitz, T. Kurz, W. Knop, W. Lauterborn: Comparison of bifurcation structures of driven dissipative nonlinear oscillators, Phys. Rev. A 43, 6495–6502 (1991)

    MathSciNet  ADS  Google Scholar 

  240. T. Tervo, R. Mettin, W. Lauterborn: Bubble cluster dynamics in acoustic cavitation, Acust. Acta Acust. 92, 178–180 (2006)

    Google Scholar 

  241. W. Lauterborn, J. Holzfuss: Evidence of a low-dimensional attractor in acoustic turbulence, Phys. Lett. A 115, 369–372 (1986)

    MathSciNet  ADS  Google Scholar 

  242. J. Holzfuss, W. Lauterborn: Liapunov exponents from time series of acoustic chaos, Phys. Rev. A 39, 2146–2152 (1989)

    ADS  Google Scholar 

  243. S. Luther, M. Sushchik, U. Parlitz, I.S. Akhatov, W. Lauterborn: Is cavitation noise governed by a low-dimensional chaotic attractor?. In: Nonlinear Acoustics at the Turn of the Millennium, ed. by W. Lauterborn, T. Kurz (Am. Inst. Physics, Melville 2000) pp. 355–358

    Google Scholar 

  244. A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization  – A universal concept in nonlinear sciences (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  245. J. Backus: Multiphonic tones in the woodwind instruments, J. Acoust. Soc. Am. 63, 591–599 (1978)

    ADS  Google Scholar 

  246. H. Keefe, B. Laden: Correlation dimension of woodwind multiphonic tones, J. Acoust. Soc. Am. 90, 1754–1765 (1991)

    ADS  Google Scholar 

  247. W. Güth: Der Wolfton (The wolf note), Acustica 63, 35–41 (1987)

    Google Scholar 

  248. K. Guettler, H. Thelin: Bowed-string multiphonics analyzed by use of impulse response and the Poisson summation formula, J. Acoust. Soc. Am. 131, 766–772 (2012)

    ADS  Google Scholar 

  249. V. Gibiat: Phase space representations of acoustical musical signals, J. Sound Vibr. 123, 529–536 (1988)

    MATH  MathSciNet  ADS  Google Scholar 

  250. M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillation of musical instruments, J. Acoust. Soc. Am. 74, 1325–1345 (1983)

    ADS  Google Scholar 

  251. N.B. Tuffilaro: Nonlinear and chaotic string vibrations, Am. J. Phys. 57, 408–414 (1989)

    ADS  Google Scholar 

  252. J.M. Johnson, A.K. Bajaj: Amplitude modulated and chaotic dynamics in resonant motion of strings, J. Sound Vibr. 128, 87–107 (1989)

    MATH  MathSciNet  ADS  Google Scholar 

  253. T.C.A. Molteno, N.B. Tuffilaro: Torus doubling and chaotic string vibrations: Experimental results, J. Sound Vibr. 137, 327–330 (1990)

    ADS  Google Scholar 

  254. J. Puaud, R. Caussé, V. Gibiat: Quasi-périodicité et bifurcations dans la note de loup, J. Acoust. 4, 253–259 (1991)

    Google Scholar 

  255. G. Müller, W. Lauterborn: The bowed string as a nonlinear dynamical system, Acust. Acta Acust. 82, 657–664 (1996)

    Google Scholar 

  256. C. Maganza, R. Caussé, F. Laloë: Bifurcations, period doublings and chaos in clarinet-like systems, Europhys. Lett. 1, 295–302 (1986)

    ADS  Google Scholar 

  257. K. Brod: Die Klarinette als Verzweigungssystem: Eine Anwendung der Methode der iterierten Abbildungen, (The clarinet as a bifurcating sytem: An application of the method of iterated maps), Acustica 72, 72–78 (1990)

    Google Scholar 

  258. T. Idogawa, T. Kobata, K. Komuro, M. Iwaki: Nonlinear vibrations in the air column of a clarinet artificially blown, J. Acoust. Soc. Am. 93, 540–551 (1993)

    ADS  Google Scholar 

  259. D. Wilson, H. Keefe: Characterizing the clarinet tone: Measurements of Lyapunov exponents, correlation dimension, and unsteadiness, J. Acoust. Soc. Am. 104, 550–561 (1998)

    ADS  Google Scholar 

  260. P.-A. Taillard, J. Kergomard, F. Laloë: Iterated maps for clarinet-like systems, Nonl. Dyn. 62, 253–271 (2010)

    MATH  Google Scholar 

  261. K.A. Legge, N.H. Fletcher: Nonlinearity, chaos, and the sound of shallow gongs, J. Acoust. Soc. Am. 86, 2439–2443 (1989)

    ADS  Google Scholar 

  262. B. Rihs, V. Gibiat, M. Castellengo: Period doubling production on a bassoon, Proc. Int. Symp. Mus. Acoust. 1995, Le Normont, Dourdan, France (Soc. Fr. dʼAcoust., Paris 1995) pp. 185–188

    Google Scholar 

  263. V. Gibiat, M. Castellengo: Period doubling occurrences in wind instruments musical performance, Acustica 86, 746–754 (2000)

    Google Scholar 

  264. H. Herzel: Bifurcation and chaos in voice signals, Appl. Mech. Rev. 46, 399–413 (1993)

    ADS  Google Scholar 

  265. J. Neubauer, M. Edgerton, H. Herzel: Nonlinear phenomena in contemporary vocal music, J. Voice 18, 1–12 (2004)

    Google Scholar 

  266. T. Yazaki, S. Sugioka, F. Mizutani, H. Mamada: Nonlinear dynamics of a forced thermocoustic oscillation, Phys. Rev. Lett. 64, 2515–2518 (1990)

    ADS  Google Scholar 

  267. T. Yazaki: Experimental observation of thermoacoustic turbulence and universal properties at the quasiperiodic transition to chaos, Phys. Rev. E 48, 1806–1818 (1993)

    ADS  Google Scholar 

  268. T. Biwa, T. Takahashi, T. Yazaki: Observation of traveling thermoacoustic shock waves (L), J. Acoust. Soc. Am. 130, 3558–3561 (2011)

    ADS  Google Scholar 

  269. G. Müller, W. Lauterborn: Experiments with the thermoacoustic oscillator – physical and musical, Proc. Int. Symp. Mus. Acoust., Le Normont, Dourdan, France (Soc. Fr. dʼAcoust., Paris 1995) pp. 178–183

    Google Scholar 

  270. G. Müller: Experimente mit dem thermoakustischen Oszillator (Experiments with the thermoacoustic oscillator), Dissertation (Technische Hochschule, Darmstadt 1996)

    Google Scholar 

  271. G.W. Swift: Thermoacoustic engines, J. Acoust. Soc. Am. 84, 1145–1180 (1988)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Werner Lauterborn , Thomas Kurz or Iskander Akhatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Lauterborn, W., Kurz, T., Akhatov, I. (2014). Nonlinear Acoustics in Fluids. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_8

Download citation

Publish with us

Policies and ethics