Skip to main content

Physical Acoustics

  • Chapter
Springer Handbook of Acoustics

Part of the book series: Springer Handbooks ((SHB))

Abstract

An overview of the fundamental concepts needed for an understanding of physical acoustics is provided. Basic derivations of the acoustic wave equation are presented for both fluids and solids. Fundamental wave concepts are discussed with an emphasis on the acoustic case. Discussions of different experiments and apparatus provide examples of how physical acoustics can be applied and of its diversity. Nonlinear acoustics is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCC:

body-centered cubic

CD:

compact disc

FCC:

face-centered cubic

FFT:

fast Fourier transform

IF:

intermediate frequency

LDV:

laser Doppler vibrometer

PL:

pressure level

PVDF:

polyvinylidene fluoride

PZT:

lead zirconate titanate

RUS:

resonant ultrasound spectroscopy

SI:

speckle interferometry

SIL:

sound intensity level

SPL:

sound pressure level

rms:

root mean square

References

  1. R.N. Thurston, A.D. Pierce (Eds.): Physical Acoustics, Vol. XXV (Academic, San Diego 1999)

    Google Scholar 

  2. W.P. Mason (Ed.): Physical Acoustics, Vol. I A,B (Academic, New York 1964)

    MATH  Google Scholar 

  3. R.N. Thurston: Wave propagation in fluids and normal solids. In: Physical Acoustics, Vol. I A, ed. by P.W. Mason (Academic, New York 1964)

    Google Scholar 

  4. A. Migliori, T.W. Darling, J.P. Baiardo, F. Freibert: Resonant ultrasound spectroscopy (RUS). In: Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. I, ed. by M. Levy, H. Bass, R. Stern (Academic, New York 2001) p. 10

    Google Scholar 

  5. R. Truell, C. Elbaum, B. Chick: Ultrasonic Methods in Solid State Physics (Academic, New York 1969)

    Google Scholar 

  6. C. Allen, I. Rudnick: A powerful high-frequency siren, J. Acoust. Soc. Am. 19, 857–865 (1947)

    Article  ADS  Google Scholar 

  7. D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy: Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble, J. Acoust. Soc. Am. 91, 3166–3183 (1992)

    Article  ADS  Google Scholar 

  8. J. Wu: Acoustical tweezers, J. Acoust. Soc. Am. 89, 2140–2143 (1991)

    Article  ADS  Google Scholar 

  9. N. Marinesco, J.J. Trillat: Action des ultrasons sur les plaques photographiques, C. R. Acad. Sci. Paris 196, 858 (1933)

    Google Scholar 

  10. H. Frenzel, H. Schultes: Luminiszenz im ultraschallbeschickten Wasser, Z. Phys. Chem. 27, 421 (1934)

    Google Scholar 

  11. I.V. Ostrovskii, P. Das: Observation of a new class of crystal sonoluminescence at piezoelectric crystal surface, Appl. Phys. Lett. 70, 167–169 (1979)

    Article  ADS  Google Scholar 

  12. I. Miyake, H. Futama: Sonoluminescence in X-rayed KCl crystals, J. Phys. Soc. Jpn. 51, 3985–3989 (1982)

    Article  ADS  Google Scholar 

  13. B.P. Barber, R. Hiller, K. Arisaka, H. Fetterman, S.J. Putterman: Resolving the picosecond characteristics of synchronous sonoluminescence, J. Acoust. Soc. Am. 91, 3061 (1992)

    Article  ADS  Google Scholar 

  14. J.T. Carlson, S.D. Lewia, A.A. Atchley, D.F. Gaitan, X.K. Maruyama, M.E. Lowry, M.J. Moran, D.R. Sweider: Spectra of picosecond sonoluminescence. In: Advances in Nonlinear Acoustics, ed. by H. Hobaek (World Scientific, Singapore 1993)

    Google Scholar 

  15. R. Hiller, S.J. Putterman, B.P. Barber: Spectrum of synchronous picosecond sonoluminescence, Phys. Rev. Lett. 69, 1182–1184 (1992)

    Article  ADS  Google Scholar 

  16. G.W. Swift: Thermoacoustic engines, J. Acoust. Soc. Am. 84, 1145–1180 (1988)

    Article  ADS  Google Scholar 

  17. L.J. House, D.B. Pape: Method and Apparatus for Acoustic Energy – Identification of Objects Buried in Soil, Patent 5357063 (1993)

    Google Scholar 

  18. C.G. Don, A.J. Rogers: Using acoustic impulses to identify a buried non-metallic objects, J. Acoust. Soc. Am. 95, 2837–2838 (1994)

    Article  ADS  Google Scholar 

  19. D.D. Caulfield: Acoustic Detection Apparatus, Patent 4922467 (1989)

    Google Scholar 

  20. D.M. Donskoy: Nonlinear vibro-acoustic technique for land mine detection, SPIE Proc. 3392, 211–217 (1998)

    Article  ADS  Google Scholar 

  21. D.M. Donskoy: Detection and discrimination of nonmetallic mines, SPIE Proc. 3710, 239–246 (1999)

    Article  ADS  Google Scholar 

  22. D.M. Donskoy, N. Sedunov, A. Ekimov, M. Tsionskiy: Optimization of seismo-acoustic land mine detection using dynamic impedances of mines and soil, SPIE Proc. 4394, 575–582 (2001)

    Article  ADS  Google Scholar 

  23. J.M. Sabatier, N. Xiang: Laser-doppler based acoustic-to-seismic detection of buried mines, Proc. SPIE 3710, 215–222 (1999)

    Article  ADS  Google Scholar 

  24. N. Xiang, J.M. Sabatier: Detection and Remediation Technologies for Mines and Minelike Targets VI, Proc. SPIE 4394, 535–541 (2001)

    Article  ADS  Google Scholar 

  25. F.D. Martin, M.A. Breazeale: A simple way to eliminate diffraction lobes emitted by ultrasonic transducers, J. Acoust. Soc. Am. 49, 1668–1669 (1971)

    Article  ADS  Google Scholar 

  26. G. Du, M.A. Breazeale: The ultrasonic field of a Gaussian transducer, J. Acoust. Soc. Am. 78, 2083–2086 (1985)

    Article  ADS  Google Scholar 

  27. R.D. Peters, M.A. Breazeale: Third harmonic of an initially sinusoidal ultrasonic wave in copper, Appl. Phys. Lett. 12, 106–108 (1968)

    Article  ADS  Google Scholar 

  28. F. Goos, H. Hänchen: Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 1, 333–346 (1947), 6. Folge

    Article  Google Scholar 

  29. K. Ergin: Energy ratio of seismic waves reflected and refracted at a rock-water boundary, Bull. Seismol. Soc. Am. 42, 349–372 (1952)

    Google Scholar 

  30. L.M. Brekhovskikh: Waves in Layered Media (Academic, New York 1960)

    Google Scholar 

  31. W.G. Neubauer: Ultrasonic reflection of a bounded beam at Rayleigh and critical angles for a plane liquid-solid interface, J. Appl. Phys. 44, 48–55 (1973)

    Article  ADS  Google Scholar 

  32. T. Tamir, H.L. Bertoni: Lateral displacement of optical beams at multilayered and periodic structures, J. Opt. Soc. Am. 61, 1397–1413 (1971)

    Article  ADS  Google Scholar 

  33. M.A. Breazeale, M.A. Torbett: Backward displacement of waves reflected from an interface having superimposed periodicity, Appl. Phys. Lett. 29, 456–458 (1976)

    Article  ADS  Google Scholar 

  34. R.T. Beyer: Nonlinear Acoustics (Naval Ships Systems Command, Washington 1974)

    Google Scholar 

  35. M.A. Breazeale: Third-order elastic constants of cubic crystals. In: Handbook of Elastic Properties of Solids, Liquids and Gases, Vol. I, ed. by M. Levy, H. Bass, R. Stern (Academic, New York 2001) pp. 489–510, Chap. 21

    Google Scholar 

  36. M.S. McPherson, I. Ostrovskii, M.A. Breazeale: Observation of acoustical memory in LiNbO3, Phys. Rev. Lett. 89, 115506 (2002)

    Article  ADS  Google Scholar 

  37. M.A. Breazeale, J. Philip, A. Zarembowitch, M. Fischer, Y. Gesland: Acoustical measurement of solid state nonlinearity: Aplication to CsCdF3 and KZnF3, J. Sound Vib. 88, 138–140 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McPherson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Breazeale, M.A., McPherson, M. (2014). Physical Acoustics. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_6

Download citation

Publish with us

Policies and ethics