Skip to main content

Sound Propagation in the Atmosphere

  • Chapter
Springer Handbook of Acoustics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Propagation of sound close to the ground outdoors involves geometric spreading, air absorption, interaction with the ground, barriers, vegetation and refraction associated with wind and temperature gradients. After a brief survey of historical aspects of the study of outdoor sound and its applications, this chapter details the physical principles associated with various propagation effects, reviews data that demonstrate them and methods for predicting them. The discussion is concerned primarily with the relatively short ranges and spectra of interest when predicting and assessing community noise rather than the frequencies and long ranges of concern, for example, in infrasonic global monitoring or used for remote sensing of the atmosphere. Specific phenomena that are discussed include spreading losses, atmospheric absorption, diffraction by barriers and buildings, interaction of sound with the ground (ground waves, surface waves, ground impedance associated with porosity and roughness, and elasticity effects), propagation through crops, shrubs and trees, wind and temperature gradient effects, shadow zones and incoherence due to atmospheric turbulence. The chapter concludes by suggesting a few areas that require further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AM:

amplitude modulation

CFD:

computational fluid dynamics

CONCAWE:

CONservation of Clean Air and Water in Europe

EC:

European Commission

FDTD:

finite difference time domain

FFLAGS:

fast field program for air–ground system

FFP:

fast field program

ICAO:

International Civil Aviation Organization

ISO:

International Organization for Standardization

PE:

parabolic equation

TG:

temperature gradient

References

  1. F.V. Hunt: Origins in Acoustics (Acoustical Society of America, AIP, New York 1992)

    Google Scholar 

  2. C.D. Ross: Outdoor sound propagation in the US civil war, Appl. Acoust. 59, 101–115 (2000)

    Google Scholar 

  3. M.V. Naramoto: A concise history of acoustics in warfare, Appl. Acoust. 59, 137–147 (2000)

    Google Scholar 

  4. G. Becker, A. Gudesen: Passive sensing with acoustics on the battlefield, Appl. Acoust. 59, 149–178 (2000)

    Google Scholar 

  5. N. Xiang, J.M. Sabatier: Land study on antipersonnel landmine detection using acoustic-to-seismic coupling, J. Acoust. Soc. Am. 113, 1333–1341 (2003)

    ADS  Google Scholar 

  6. A. Michelson: Sound reception in different environments. In: Perspectives in Sensory Ecology, ed. by M.A. Ali (Plenum, New York 1978) pp. 345–373

    Google Scholar 

  7. V.E. Ostashev: Acoustics in Moving Inhomogeneous Media (E. & F.N. Spon, London 1999)

    Google Scholar 

  8. J.E. Piercy, T.F.W. Embleton, L.C. Sutherland: Review of noise propagation in the atmosphere, J. Acoust. Soc. Am. 61, 1403–1418 (1977)

    ADS  Google Scholar 

  9. K. Attenborough: Review of ground effects on outdoor sound propagation from continuous broadband sources, Appl. Acoust. 24, 289–319 (1988)

    Google Scholar 

  10. J.M. Sabatier, H.M. Hess, P.A. Arnott, K. Attenborough, E. Grissinger, M. Romkens: In situ measurements of soil physical properties by acoustical techniques, Soil Sci. Am. J. 54, 658–672 (1990)

    Google Scholar 

  11. H.M. Moore, K. Attenborough: Acoustic determination of air-filled porosity and relative air permeability of soils, J. Soil Sci. 43, 211–228 (1992)

    Google Scholar 

  12. N.D. Harrop: The exploitation of acoustic-to-seismic coupling for the determination of soil properties. Ph.D. Thesis (The Open University, Milton Keynes 2000)

    Google Scholar 

  13. K. Attenborough, H.E. Bass, X. Di, R. Raspet, G.R. Becker, A. Güdesen, A. Chrestman, G.A. Daigle, A. LʼEspérance, Y. Gabillet, K.E. Gilbert, Y.L. Li, M.J. White, P. Naz, J.M. Noble, H.J.A.M. van Hoof: Benchmark cases for outdoor sound propagation models, J. Acoust. Soc. Am. 97, 173–191 (1995)

    ADS  Google Scholar 

  14. E.M. Salomons: Computational Atmospheric Acoustics (Kluwer, Dordrecht 2002)

    Google Scholar 

  15. M.C. Bérengier, B. Gavreau, P. Blanc-Benon, D. Juvé: A short review of recent progress in modelling outdoor sound propagation, Acust. Acta Acust. 89, 980–991 (2003)

    Google Scholar 

  16. Directive of the European parliament and of the Council relating to the assessment and management of noise 2002/EC/49: 25 June 2002, Off. J. Eur. Communities L189, 12–25 (2002)

    Google Scholar 

  17. J. Kragh, B. Plovsing: Nord2000. Comprehensive Outdoor Sound Propagation Model. Part I-II. DELTA Acoustics & Vibration Report, 1849-1851/00, 2000 (Danish Electronics, Light and Acoustics, Lyngby, Denmark 2001)

    Google Scholar 

  18. HARMONOISE contract funded by the European Commission IST-2000-28419, available online at http://www.trl.co.uk/online_store/reports_publications/trl_reports/cat_traffic_and_the_environment/report_harmonoise_prediction_model_for_road_traffic_noise.htm (last accessed 29 April 2014)

  19. IMAGINE (Improved Methods for the Assessment of the Generic Impact of Noise in the Environment): http://doutoramento.schiu.com/referencias/outras/Improved%20Methods%20for%20the%20Assessment%20of%20the%20Generic%20Impact%20of%20Noise%20in%20the%20Environment%20(IMAGINE)%20-%20State%20of%20the%20Art.pdf (last viewed 29 April 2014)

  20. K.M. Li, S.H. Tang: The predicted barrier effects in the proximity of tall buildings, J. Acoust. Soc. Am. 114, 821–832 (2003)

    ADS  Google Scholar 

  21. H.E. Bass, L.C. Sutherland, A.J. Zuckewar: Atmospheric absorption of sound: Further developments, J. Acoust. Soc. Am. 97, 680–683 (1995)

    ADS  Google Scholar 

  22. D.T. Blackstock: Fundamentals of Physical Acoustics, University of Texas Austin, Texas (Wiley, New York 2000)

    Google Scholar 

  23. C. Larsson: Atmospheric Absorption Conditions for Horizontal Sound Propagation, Appl. Acoust. 50, 231–245 (1997)

    Google Scholar 

  24. C. Larsson: Weather Effects on Outdoor Sound Propagation, Int. J. Acoust. Vibration 5, 33–36 (2000)

    ADS  Google Scholar 

  25. ISO 9613-2: Acoustics: Attenuation of Sound During Propagation Outdoors. Part 2: General Method of Calculation (International Standard Organisation, Geneva, Switzerland 1996)

    Google Scholar 

  26. ISO 10847: Acoustics – In-situ determination of insertion loss of outdoor noise barriers of all types (International Standards Organisation, Geneva, Switzerland 1997)

    Google Scholar 

  27. ANSI S12.8: Methods for Determination of Insertion Loss of Outdoor Noise Barriers (American National Standard Institute, Washington, DC 1998)

    Google Scholar 

  28. G.A. Daigle: Report by the International Institute of Noise Control Engineering Working Party on the Effectiveness of Noise Walls (Noise/News International I-INCE, Poughkeepsie, NY 1999)

    Google Scholar 

  29. B. Kotzen, C. English: Environmental Noise Barriers: A Guide to their Acoustic and Visual Design (E.&F.N. Spon, London 1999)

    Google Scholar 

  30. A. Sommerfeld: Mathematische Theorie der Diffraction, Math. Ann. 47, 317–374 (1896)

    MATH  MathSciNet  Google Scholar 

  31. H.M. MacDonald: A class of diffraction problems, Proc. Lond. Math. Soc. 14, 410–427 (1915)

    MATH  Google Scholar 

  32. S.W. Redfearn: Some acoustical source–observer problems, Philos. Mag. Ser. 7, 223–236 (1940)

    Google Scholar 

  33. J.B. Keller: The geometrical theory of diffraction, J. Opt. Soc. 52, 116–130 (1962)

    ADS  Google Scholar 

  34. W.J. Hadden, A.D. Pierce: Sound diffraction around screens and wedges for arbitrary point source locations, J. Acoust. Soc. Am. 69, 1266–1276 (1981)

    ADS  MATH  Google Scholar 

  35. T.F.W. Embleton: Line integral theory of barrier attenuation in the presence of ground, J. Acoust. Soc. Am. 67, 42–45 (1980)

    ADS  Google Scholar 

  36. P. Menounou, I.J. Busch-Vishniac, D.T. Blackstock: Directive line source model: A new model for sound diffracted by half planes and wedges, J. Acoust. Soc. Am. 107, 2973–2986 (2000)

    ADS  Google Scholar 

  37. H. Medwin: Shadowing by finite noise barriers, J. Acoust. Soc. Am. 69, 1060–1064 (1981)

    ADS  Google Scholar 

  38. Z. Maekawa: Noise reduction by screens, Appl. Acoust. 1, 157–173 (1968)

    Google Scholar 

  39. K.J. Marsh: The CONCAWE Model for Calculating the Propagation of Noise from Open-Air Industrial Plants, Appl. Acoust. 15, 411–428 (1982)

    MathSciNet  Google Scholar 

  40. R.B. Tatge: Barrier-wall attenuation with a finite sized source, J. Acoust. Soc. Am. 53, 1317–1319 (1973)

    ADS  Google Scholar 

  41. U.J. Kurze, G.S. Anderson: Sound attenuation by barriers, Appl. Acoust. 4, 35–53 (1971)

    Google Scholar 

  42. P. Menounou: A correction to Maekawaʼs curve for the insertion loss behind barriers, J. Acoust. Soc. Am. 110, 1828–1838 (2001)

    ADS  Google Scholar 

  43. Y.W. Lam, S.C. Roberts: A simple method for accurate prediction of finite barrier insertion loss, J. Acoust. Soc. Am. 93, 1445–1452 (1993)

    ADS  Google Scholar 

  44. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York 1972)

    MATH  Google Scholar 

  45. K. Attenborough, S.I. Hayek, J.M. Lawther: Propagation of sound above a porous half-space, J. Acoust. Soc. Am. 68, 1493–1501 (1980)

    ADS  MATH  MathSciNet  Google Scholar 

  46. A. Banos: Dipole Radiation in the Presence of Conducting Half-Space (Pergamon, New York 1966), Chap. 2–4

    Google Scholar 

  47. R.J. Donato: Model experiments on surface waves, J. Acoust. Soc. Am. 63, 700–703 (1978)

    ADS  Google Scholar 

  48. G.A. Daigle, M.R. Stinson, D.I. Havelock: Experiments on surface waves over a model impedance using acoustical pulses, J. Acoust. Soc. Am. 99, 1993–2005 (1996)

    ADS  Google Scholar 

  49. Q. Wang, K.M. Li: Surface waves over a convex impedance surface, J. Acoust. Soc. Am. 106, 2345–2357 (1999)

    ADS  Google Scholar 

  50. D.G. Albert: Observation of acoustic surface waves in outdoor sound propagation, J. Acoust. Soc. Am. 113, 2495–2500 (2003)

    ADS  Google Scholar 

  51. K.M. Li, T. Waters-Fuller, K. Attenborough: Sound propagation from a point source over extended-reaction ground, J. Acoust. Soc. Am. 104, 679–685 (1998)

    ADS  Google Scholar 

  52. J. Nicolas, J.L. Berry, G.A. Daigle: Propagation of sound above a finite layer of snow, J. Acoust. Soc. Am. 77, 67–73 (1985)

    ADS  Google Scholar 

  53. J.F. Allard, G. Jansens, W. Lauriks: Reflection of spherical waves by a non-locally reacting porous medium, Wave Motion 36, 143–155 (2002)

    MATH  Google Scholar 

  54. M.E. Delany, E.N. Bazley: Acoustical properties of fibrous absorbent materials, Appl. Acoust. 3, 105–116 (1970)

    Google Scholar 

  55. K.B. Rasmussen: Sound propagation over grass covered ground, J. Sound Vib. 78, 247–255 (1981)

    ADS  Google Scholar 

  56. K. Attenborough: Ground parameter information for propagation modeling, J. Acoust. Soc. Am. 92, 418–427 (1992)

    ADS  Google Scholar 

  57. R. Raspet, K. Attenborough: Erratum: Ground parameter information for propagation modeling, J. Acoust. Soc. Am. 92, 3007 (1992)

    ADS  Google Scholar 

  58. R. Raspet, J.M. Sabatier: The surface impedance of grounds with exponential porosity profiles, J. Acoust. Soc. Am. 99, 147–152 (1996)

    ADS  Google Scholar 

  59. K. Attenborough, I. Bashir, S. Taherzadeh: Outdoor ground impedance models, J. Acoust. Soc. Am. 129(5), 2806–2819 (2011)

    ADS  Google Scholar 

  60. K. Attenborough: Models for the acoustical properties of air-saturated granular materials, Acta Acust. 1, 213–226 (1993)

    Google Scholar 

  61. J.F. Allard: Propagation of Sound in Porous Media: Modelling Sound Absorbing Material (Elsevier, New York 1993)

    Google Scholar 

  62. D.L. Johnson, T.J. Plona, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176, 379–401 (1987)

    ADS  MATH  Google Scholar 

  63. O. Umnova, K. Attenborough, K.M. Li: Cell model calculations of dynamic drag parameters in packings of spheres, J. Acoust. Soc. Am. 107, 3113–3119 (2000)

    ADS  Google Scholar 

  64. K.V. Horoshenkov, K. Attenborough, S.N. Chandler-Wilde: Padé approximants for the acoustical properties of rigid frame porous media with pore size distribution, J. Acoust. Soc. Am. 104, 1198–1209 (1998)

    ADS  Google Scholar 

  65. T. Yamamoto, A. Turgut: Acoustic wave propagation through porous media with arbitrary pore size distributions, J. Acoust. Soc. Am. 83, 1744–1751 (1988)

    ADS  Google Scholar 

  66. ANSI/ASA S1.18-2010: American National Standard Method for Determining the Acoustic Impedance of Ground Surfaces (revision of S1.18-1998) (American National Standards Institute, 2010)

    Google Scholar 

  67. NORDTEST ACOU 104, Ground surfaces: Determination of acoustic impedance (1998), available online at www.nordicinnovation.net/nordtestfiler/acou104.pdf (last accessed 28 February 2011)

  68. B.A. De Jong, A. Moerkerken, J.D. van der Toorn: Propagation of sound over grassland and over an earth barrier, J. Sound Vib. 86, 23–46 (1983)

    ADS  Google Scholar 

  69. S. Taherzadeh, K. Attenborough: Deduction of ground impedance from measurements of excess attenuation spectra, J. Acoust. Soc. Am. 105, 2039–2042 (1999)

    ADS  Google Scholar 

  70. K. Attenborough, T. Waters-Fuller: Effective impedance of rough porous ground surfaces, J. Acoust. Soc. Am. 108, 949–956 (2000)

    ADS  Google Scholar 

  71. P. Boulanger, K. Attenborough, S. Taherzadeh, T.F. Waters-Fuller, K.M. Li: Ground effect over hard rough surfaces, J. Acoust. Soc. Am. 104, 1474–1482 (1998)

    ADS  Google Scholar 

  72. K. Attenborough, S. Taherzadeh: Propagation from a point source over a rough finite impedance boundary, J. Acoust. Soc. Am. 98, 1717–1722 (1995)

    ADS  MathSciNet  Google Scholar 

  73. K. Attenborough, K.M. Li, K. Horoshenkov: Predicting Outdoor Sound (Taylor and Francis, London 2007)

    Google Scholar 

  74. K. Attenborough, T. Waters-Fuller, K.M. Li, J.A. Lines: Acoustical properties of Farmland, J. Agric. Eng. Res. 76, 183–195 (2000)

    Google Scholar 

  75. I. Bashir, S. Taherzadeh, K. Attenborough: Diffraction assisted rough ground effect: Models and data, J. Acoust. Soc. Am. 133, 1281–1292 (2013)

    ADS  Google Scholar 

  76. D.E. Aylor: Noise reduction by vegetation and ground, J. Acoust. Soc. Am. 51, 197–205 (1972)

    ADS  Google Scholar 

  77. P.H. Parkin, W.E. Scholes: The horizontal propagation of sound from a jet close to the ground at Radlett, J. Sound Vib. 1, 1–13 (1965)

    ADS  Google Scholar 

  78. P.H. Parkin, W.E. Scholes: The horizontal propagation of sound from a jet close to the ground at Hatfield, J. Sound Vib. 2, 353–374 (1965)

    ADS  Google Scholar 

  79. O. Zaporozhets, V. Tokarev, K. Attenborough: Predicting Noise from Aircraft Operated on the Ground, Appl. Acoust. 64, 941–953 (2003)

    Google Scholar 

  80. C. Madshus, N.I. Nilsen: Low frequency vibration and noise from military blast activity –prediction and evaluation of annoyance, Proc. InterNoise 2000, Nice, France (2000)

    Google Scholar 

  81. E. Øhrstrøm: Community reaction to noise and vibrations from railway traffic, Proc. Internoise 1996, Liverpool U.K. (1996)

    Google Scholar 

  82. ISO 2631-2 (1998), Mechanical vibration and shock – Evaluation of human exposure to whole body vibration – Part 2: Vibration in buildings

    Google Scholar 

  83. W.M. Ewing, W.S. Jardetzky, F. Press: Elastic Waves in Layered Media (McGraw–Hill, New York 1957)

    MATH  Google Scholar 

  84. J.M. Sabatier, H.E. Bass, L.M. Bolen, K. Attenborough: Acoustically induced seismic waves, J. Acoust. Soc. Am. 80, 646–649 (1986)

    ADS  Google Scholar 

  85. S. Tooms, S. Taherzadeh, K. Attenborough: Sound propagating in a refracting fluid above a layered fluid saturated porous elastic material, J. Acoust. Soc. Am. 93, 173–181 (1993)

    ADS  Google Scholar 

  86. K. Attenborough: On the acoustic slow wave in air filled granular media, J. Acoust. Soc. Am. 81, 93–102 (1987)

    ADS  Google Scholar 

  87. R.D. Stoll: Theoretical aspects of sound transmission in sediments, J. Acoust. Soc. Am. 68(5), 1341–1350 (1980)

    ADS  Google Scholar 

  88. C. Madshus, F. Lovholt, A. Kaynia, L.R. Hole, K. Attenborough, S. Taherzadeh: Air–ground interaction in long range propagation of low frequency sound and vibration – field tests and model verification, Appl. Acoust. 66, 553–578 (2005)

    Google Scholar 

  89. G.A. Daigle, M.R. Stinson: Impedance of grass covered ground at low frequencies using a phase difference technique, J. Acoust. Soc. Am. 81, 62–68 (1987)

    ADS  Google Scholar 

  90. M.W. Sprague, R. Raspet, H.E. Bass, J.M. Sabatier: Low frequency acoustic ground impedance measurement techniques, Appl. Acoust. 39, 307–325 (1993)

    Google Scholar 

  91. D.E. Aylor: Sound transmission through vegetation in relation to leaf area density, leaf width and breadth of canopy, J. Acoust. Soc. Am. 51, 411–414 (1972)

    ADS  Google Scholar 

  92. J.V. Sanchez-Perez, C. Rubio, R. Martinez-Sala, R. Sanchez-Grandia, V. Gomez: Acoustic barriers based on periodic arrays of scatterers, Appl. Phys. Lett. 81, 5240–5242 (2002)

    ADS  Google Scholar 

  93. M.A. Price, K. Attenborough, N.W. Heap: Sound attenuation through trees: Measurements and Models, J. Acoust. Soc. Am. 84, 1836–1844 (1988)

    ADS  Google Scholar 

  94. J. Kragh: Road traffic noise attenuation by belts of trees and bushes, Danish Acoustical Laboratory Report no. 31 (1982)

    Google Scholar 

  95. L. R. Huddart: The use of vegetation for traffic noise screening, TRRL Research Report 238 (1990)

    Google Scholar 

  96. G.M. Heisler, O.H. McDaniel, K.K. Hodgdon, J.J. Portelli, S.B. Glesson: Highway noise abatement in two forests, Proc. NOISE-CON 87, PSU, USA (1987)

    Google Scholar 

  97. W.H.T. Huisman: Sound propagation over vegetation-covered ground. Ph.D. Thesis (Univ. Nijmegen, Nijmegen 1990)

    Google Scholar 

  98. J. Defrance, N. Barriere, E. Premat: Forest as a meteorological screen for traffic noise, Proc. 9th ICSV, Orlando (2002)

    Google Scholar 

  99. N. Barrière, Y. Gabillet: Sound propagation over a barrier with realistic wind gradients. Comparison of wind tunnel experiments with GFPE computations, Acust. Acta Acust. 85, 325–334 (1999)

    Google Scholar 

  100. N. Barrière: Etude théorique et expérimentale de la propagation du bruit de trafic en forêt. Ph.D. Thesis (Ecole Centrale de Lyon, France 1999)

    Google Scholar 

  101. M.E. Swearingen, M. White: Sound propagation through a forest: A predictive model, Proc. 11th LRSPS, Vermont (2004)

    Google Scholar 

  102. J.M. Wunderli, E.M. Salomons: A model to predict the sound reflection from forests, Acust. Acta Acust. 95, 76–85 (2009)

    Google Scholar 

  103. R. Martínez-Sala, C. Rubio, L.M. García-Raffi, J.V. Sánchez-Pérez, E.A. Sánchez-Pérez, J. Llinares: Control of noise by trees arranged like sonic crystals, J. Sound Vib. 291, 100–106 (2006)

    ADS  Google Scholar 

  104. T. Van Renterghem, D. Botteldooren, K. Verheyen: Road traffic noise shielding by vegetation belts of limited depth, J. Sound Vib. 331(10), 2404–2425 (2012)

    ADS  Google Scholar 

  105. S. Taherzadeh, I. Bashir, K. Attenborough: Aperiodicity effects on sound transmission through arrays of identical cylinders perpendicular to the ground, J. Acoust. Soc. Am. 132(4), EL323–EL328 (2012)

    Google Scholar 

  106. I. Rudnick: Propagation of sound in open air. In: Handbook of Noise Control, Chap. 3, ed. by C.M. Harris (McGraw–Hill, New York 1957) pp. 3:1–3:17

    Google Scholar 

  107. K.M. Li: On the validity of the heuristic ray-trace based modification to the Weyl Van der Pol formula, J. Acoust. Soc. Am. 93, 1727–1735 (1993)

    ADS  Google Scholar 

  108. V. Zouboff, Y. Brunet, M. Berengier, E. Sechet: A qualitative approach of atmospherical effects on long range sound propagation, Proc. 6th Int. Symp. Long Range Sound Propagation, Ottawa, NRCC, ed. by D.I. Havelock, M. Stinson (1994) pp. 251–269

    Google Scholar 

  109. The propagation of noise from petroleum and petrochemical complexes to neighbouring communities, CONCAWE Report no.4/81, Den Haag (1981)

    Google Scholar 

  110. A.S. Monin, A.M. Yaglom: Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1 (MIT press, Cambridge 1979)

    Google Scholar 

  111. R.B. Stull: An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht 1991) pp. 347–347

    Google Scholar 

  112. E.M. Salomons: Downwind propagation of sound in an atmosphere with a realistic sound speed profile: A semi-analytical ray model, J. Acoust. Soc. Am. 95, 2425–2436 (1994)

    ADS  Google Scholar 

  113. A.A.M. Holtslag: Estimates of diabatic wind speed profiles from near surface weather observations, Boundary-Layer Meteorol. 29, 225–250 (1984)

    ADS  Google Scholar 

  114. A.G. Davenport: Rationale for determining design wind velocities, J. Am. Soc. Civ. Eng. ST-86, 39–68 (1960)

    Google Scholar 

  115. E.M. Salomons, F.H. van den Berg, H.E.A. Brackenhoff: Long-term average sound transfer through the atmosphere based on meteorological statistics and numerical computations of sound propagation, Proc. 6th Int. Symp. Long Range Sound Propagation, Ottawa, NRCC, ed. by D.I. Havelock, M. Stinson (1994) pp. 209–228

    Google Scholar 

  116. D. Heimann, E. Salomons: Testing meteorological classifications for the prediction of long-term average sound levels, J. Am. Soc. Civ. Eng. 65, 925–950 (2004)

    Google Scholar 

  117. T.F.W. Embleton: Tutorial on sound propagation outdoors, J. Acoust. Soc. Am. 100, 31–48 (1996)

    ADS  Google Scholar 

  118. L.C. Sutherland, G.A. Daigle: Atmospheric sound propagation. In: Encylclopedia of Acoustics, ed. by M.J. Crocker (Wiley, New York 1998) pp. 305–329

    Google Scholar 

  119. M.R. Stinson, D.J. Havelock, G.A. Daigle: Simulation of scattering by turbulence into a shadow zone region using the GF-PE method, Proc. 6th LRSPS, Ottawa, NRCC (1996) pp. 283–307

    Google Scholar 

  120. D.K. Wilson: A brief tutorial on atmospheric boundary-layer turbulence for acousticians, Proc. 7th LRSPS, Ecole Centrale, Lyon (1996) pp. 111–122

    Google Scholar 

  121. D.K. Wilson, J.G. Brasseur, K.E. Gilbert: Acoustic scattering and the spectrum of atmospheric turbulence, J. Acoust. Soc. Am. 105, 30–34 (1999)

    ADS  Google Scholar 

  122. A. LʼEsperance, G.A. Daigle, Y. Gabillet: Estimation of linear sound speed gradients associated to general meteorological conditions, Proc. 6th LRSPS, Ottawa, NRCC (1996)

    Google Scholar 

  123. D.K. Wilson: On the application of turbulence spectral/correlation models to sound propagation in the atmosphere, Proc. 8th LRSPS, Penn State (1988)

    Google Scholar 

  124. V.E. Ostashev, D.K. Wilson: Relative contributions from temperature and wind velocity fluctuations to the statistical moments of a sound field in a turbulent atmosphere, Acust. Acta Acust. 86, 260–268 (2000)

    Google Scholar 

  125. S.F. Clifford, R.T. Lataitis: Turbulence effects on acoustic wave propagation over a smooth surface, J. Acoust. Soc. Am. 73, 1545–1550 (1983)

    ADS  MATH  Google Scholar 

  126. S. Taherzadeh, K. Attenborough: Using the Fast Field Program in a refracting, turbulent medium, Report 3 for ESDU International (unpublished) (1999)

    Google Scholar 

  127. K.E. Gilbert, R. Raspet, X. Di: Calculation of turbulence effects in an upward refracting atmosphere, J. Acoust. Soc. Am. 87(6), 2428–2437 (1990)

    ADS  Google Scholar 

  128. G.A. Daigle: Effects of atmospheric turbulence on the interference of sound waves above a finite impedance boundary, J. Acoust. Soc. Am. 65, 45–49 (1979)

    ADS  Google Scholar 

  129. E.M. Salomons: Reduction of the performance of a noise screen due to screen induced wind-speed gradients. Numerical computations and wind-tunnel experiments, J. Acoust. Soc. Am. 105, 2287–2293 (1999)

    ADS  Google Scholar 

  130. F.M. Weiner, D.N. Keast: Experimental study of the propagation of sound over ground, J. Acoust. Soc. Am. 31(6), 724–733 (1959)

    ADS  Google Scholar 

  131. E.M. Salomons, K.B. Rasmussen: Numerical computation of sound propagation over a noise screen based on an analytic approximation of the wind speed field, Appl. Acoust. 60, 327–341 (2000)

    Google Scholar 

  132. M. West, Y.W. Lam: Prediction of sound fields in the presence of terrain features which produce a range dependent meteorology using the generalised terrain parabolic equation (GT-PE) model, Proc. InterNoise 2000, Nice, France 2 (2000) pp. 943–

    Google Scholar 

  133. E.M. Salomons, R. Blumrich, D. Heimann: Eulerian time-domain model for sound propagation over a finite impedance ground surface. Comparison with frequency-domain models, Acust. Acta Acust. 88, 483–492 (2002)

    Google Scholar 

  134. R. Blumrich, D. Heimann: A linearized Eulerian sound propagation model for studies of complex meteorological effects, J. Acoust. Soc. Am. 112, 446–455 (2002)

    ADS  Google Scholar 

  135. T. Van Renterghem, D. Botteldooren: Numerical simulation of the effect of trees on down-wind noise barrier performance, Acust. Acta Acust. 89, 764–778 (2003)

    Google Scholar 

  136. T. Van Renterghem, D. Botteldooren: Effect of a row of trees behind noise barriers in wind, Acust. Acta Acust. 88, 869–878 (2002)

    Google Scholar 

  137. P. Boulanger, K. Attenborough: Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds, J. Acoust. Soc. Am. 117, 751–762 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Attenborough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Attenborough, K. (2014). Sound Propagation in the Atmosphere. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_4

Download citation

Publish with us

Policies and ethics