Skip to main content

Microphone Array

  • Chapter

Part of the Springer Handbooks book series (SHB)

Abstract

This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz–Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.

Keywords

  • Spherical Harmonic
  • Sound Field
  • Microphone Array
  • Linear Equation System
  • Minimum Variance Distortionless Response

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0755-7_29
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0755-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 29.1
Fig. 29.2
Fig. 29.3
Fig. 29.4
Fig. 29.5
Fig. 29.6
Fig. 29.7
Fig. 29.8
Fig. 29.9
Fig. 29.10
Fig. 29.11
Fig. 29.12
Fig. 29.13
Fig. 29.14
Fig. 29.15
Fig. 29.16

Abbreviations

3-D:

three-dimensional

BEM:

boundary-element method

CNMAT:

Center for New Music and Audio Technologies

DOA:

direction of arrival

FEM:

finite-element method

GCC:

generalized cross-correlation

GISD:

generalized internal source density

HELS:

Helmholtz equation least squares

LCMV:

linear constraint minimum variance

MVDR:

minimum variance distortionless response

SNR:

signal-to-noise ratio

References

  1. S. Gannot, D. Burshtein, E. Weinstein: Signal enhancement using beamforming and nonstationarity with applications to speech, IEEE Trans. Signal Process. 49, 1614–1626 (2001)

    ADS  CrossRef  Google Scholar 

  2. R. Bader: Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar, J. Acoust. Soc. Am. 131(1), 819–828 (2012)

    ADS  CrossRef  Google Scholar 

  3. M. Pollow, G.K. Behler, H. Pomberger, F. Zotter: Aufnahme und Wiedergabe von Schallfeldern mit Kugelarrays [Recording and Playback of sound fields using spherical arrays], DAGA 2011, Düsseldorf (2011)

    Google Scholar 

  4. E.G. Williams, J.D. Maynard, E. Skurdzyk: Sound source reconstructions using a microphone array, J. Acoust. Soc. Am. 6(1), 341–344 (1980)

    Google Scholar 

  5. D.L. Alon, B. Rafaely: Spindle-Torus Sampling for an Efficient-Scanning Spherical Microphone Array, Acust. Acta Acust. 98, 83–90 (2012)

    CrossRef  Google Scholar 

  6. N. Epain, C.T. Jin: Independent Component Analysis Using Spherical Microphone Arrays, Acust. Acta Acust. 98, 91–102 (2012)

    CrossRef  Google Scholar 

  7. I. Balmages, B. Rafaely: Open-sphere designs for spherical microphone arrays, IEEE Trans. Audio Speech Lang. Proc. 15, 727–732 (2007)

    CrossRef  Google Scholar 

  8. B. Rafaely: The spherical-shell microphone array, IEEE Trans. Audio Speech Lang. Proc. 16, 740–747 (2008)

    CrossRef  Google Scholar 

  9. J. Meyer, G.W. Elko: A highly scalable spherical microphone array based on an orthonormal decomposition of the sound field, ICASSP II Proc. (2002) pp. 1781–1784

    Google Scholar 

  10. T.D. Abhayapala, D.B. Ward: Theory and design of high order sound field microphones using spherical microphone array, ICASSP II Proc. (2002) pp. 1949–1952

    Google Scholar 

  11. B. Rafaely: Plane-wave decomposition of the pressure on a sphere by spherical convolution, J. Acoust. Soc. Am. 116, 2149–2157 (2004)

    ADS  CrossRef  Google Scholar 

  12. D. Alon, B. Rafaely: Efficient sampling for scanning spherical array, Proc. 2nd Int. Symp. Ambisonics and Spherical Acoustics (2010)

    Google Scholar 

  13. B. Rafaely: Analysis and design of spherical microphones arrays, IEEE Trans. Speech Audio Proc. 13, 135–143 (2005)

    CrossRef  Google Scholar 

  14. D.N. Zotkin, R. Duraiswami, N.A. Gumerov: Sound field decomposition using spherical microphone arrays, IEEE ICASSP (2008) pp. 277–280

    Google Scholar 

  15. B. Rafaely: The spherical-shell microphone array, IEEE Trans. Audio Speech Lang. Process. 16(4), 740–747 (2008)

    CrossRef  Google Scholar 

  16. E.G. Williams, N.P. Valdivia, P.C. Herdic, J. Kloss: Volumetric acoustic vector intensity imager, J. Acoust. Soc. Am. 120, 1887–1897 (2006)

    ADS  CrossRef  Google Scholar 

  17. J. Meyer, G. Elko: A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield, IEEE ICASSP II, Vol. 2 (2002) pp. 1781–1784

    Google Scholar 

  18. Z. Li, R. Duraiswami: A robust and self-reconfigurable design of spherical microhone array for multi-resolution beamforming, IEEE ICASSP 05, Vol. 4 (2005) pp. 1137–1140

    Google Scholar 

  19. M. Park, B. Rafaely: Sound-field analysis by plane-wave decomposition using spherical microphone array, J. Acoust. Soc. Am. 118, 3094–3103 (2005)

    ADS  CrossRef  Google Scholar 

  20. B. Rafaely: Plane-wave decomposition of the sound field on a sphere by spherical convolution, J. Acoust. Soc. Am. 116, 2149–2157 (2004)

    ADS  CrossRef  Google Scholar 

  21. Z. Li, R. Duraiswami: Flexible and optimal design of spherical microphone arrays for beamforming, IEEE Trans. Audio Speech Lang. Process. 15, 702–714 (2007)

    CrossRef  Google Scholar 

  22. B. Rafaely: Analysis and design of spherical microphone arrays, IEEE Trans. Audio Speech Lang. Process. 13, 135–143 (2005)

    CrossRef  Google Scholar 

  23. S.P. Applebaum: Adaptive arrays, IEEE Trans. Antennas Propag. 24, 585–598 (1976)

    ADS  CrossRef  Google Scholar 

  24. S. Gannot, D. Burshtein, E. Weinstein: Iterative and sequential Kalman filter-based speech enhancement algorithms, IEEE Trans. Speech Audio Process. 6, 373–385 (1998)

    CrossRef  Google Scholar 

  25. K.K. Paliwal, A. Basu: A speech enhancement method based on Kalman filtering, Proc. IEEE ICASSP (1987) pp. 177–180

    Google Scholar 

  26. B. Lee, K.Y. Lee, S. Ann: An EM-based approach for parameter enhancement with an application to speech signals, Signal Process. 46, 1–14 (1995)

    CrossRef  MATH  Google Scholar 

  27. J.S. Lim (ed.): Speech Enhancement (Prentice-Hall, Englewood Cliffs 1983)

    Google Scholar 

  28. P. Loizou: Speech Enhancement: Theory and Practice (CRC, Boca Raton 2007)

    Google Scholar 

  29. P. Vary, R. Martin: Digital Speech Transmission: Enhancement, Coding, and Error Concealment (Wiley, New York 2006)

    CrossRef  Google Scholar 

  30. J. Benesty, S. Makino, J. Chen (Eds.): Speech Enhancement (Springer, Heidelberg 2005)

    Google Scholar 

  31. S. Doclo, M. Moonen: GSVD-based optimal filtering for single and multimicrophone speech enhancement, IEEE Trans. Signal Process. 50, 2230–2244 (2002)

    ADS  CrossRef  Google Scholar 

  32. S. Doclo: Multi-Microphone Noise Reduction and Dereverberation Techniques for Speech Applications. Ph.D. Thesis (Katholieke Universiteit Leuven, Leuven 2003)

    Google Scholar 

  33. C.H. Knapp, G.C. Carter: The generalized correlation method for estimation of time delay, IEEE Trans. Acoust. Speech Signal Process. 24, 320–327 (1976)

    CrossRef  Google Scholar 

  34. M. Brandstein, D.B. Ward (eds.): Microphone Arrays (Springer, Heidelberg 2001)

    Google Scholar 

  35. M. Omologo, P. Svaizer: Acoustic event localization using a crosspower-spectrum phase based technique, Proc. IEEE ICASSP II (1994) pp. 273–276

    Google Scholar 

  36. H. Wang, P. Chu: Voice source localization for automatic camera pointing system in videoconferencing, Proc. IEEE WASPAA (1997)

    Google Scholar 

  37. M.S. Brandstein: A pitch-based approach to time-delay estimation of reverberant speech, Proc. IEEE WASPAA (1997)

    Google Scholar 

  38. J. Benesty, J. Chen, Y. Huang: Microphone Array Signal Processing (Springer, Heidelberg 2008)

    Google Scholar 

  39. D.H. Johnson, D.E. Dudgeon: Array Signal Processing, Concepts and Techniques (Prentice-Hall, Englewood Cliffs 1993)

    MATH  Google Scholar 

  40. D.E. Dudgeon: Fundamentals of digital array processing, Proc. IEEE 63, 898–904 (1977)

    CrossRef  Google Scholar 

  41. X. Zhang, J.H.L. Hansen: CSA-BF: A constrained switched adaptive beamformer for speech enhancement and recognition in real car environments, IEEE Trans. Speech Audio Process 11, 733–745 (2003)

    CrossRef  Google Scholar 

  42. J.L. Flanagan, J.D. Johnson, R. Zahn, G.W. Elko: Computer-steered microphone arrays for sound transduction in large rooms, J. Acoust. Soc. Am. 75, 1508–1518 (1985)

    ADS  CrossRef  Google Scholar 

  43. J.L. Flanagan, D.A. Berkley, G.W. Elko, J.E. West, M.M. Sondhi: Autodirective microphone systems, Acustica 73, 58–71 (1991)

    Google Scholar 

  44. S.A. Schelkunoff: A mathematical theory of linear arrays, Bell Syst. Tech. J. 22, 80–107 (1943)

    CrossRef  MATH  MathSciNet  Google Scholar 

  45. A.V. Oppenheim, R.W. Schafer, J.R. Buch: Discrete-Time Signal Processing, 2nd edn. (Prentice Hall, Upper Saddle River 1998)

    Google Scholar 

  46. V.R. Algazi, M. Suk: On the frequency weighted least-square design of finite duction filters, IEEE Trans. Circuits Syst. 22, 943–953 (1975)

    CrossRef  Google Scholar 

  47. S. Doclo, M. Moonen: Design of far-field and near-field braodband beamformers using eigenfilters, Signal Process. 83, 2641–2673 (2003)

    CrossRef  MATH  Google Scholar 

  48. M. Okuda, M. Ikehara, S. Takahashi: Fast and stable least-squares approach for the design of linear phase FIR filters, IEEE ICASSP II. Proc. (1994) pp. 273–276

    Google Scholar 

  49. S.P. Applebaum: Adaptive arrays, IEEE Trans. Antennas Propagat. 24, 585–598 (1976)

    ADS  CrossRef  Google Scholar 

  50. J. Capon: High resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57, 1408–1418 (1969)

    CrossRef  Google Scholar 

  51. O. Owsley: Sonar array processing. In: Array Signal Processing, ed. by S. Haykin (Prentice-Hall, Englewood Cliffs 1984)

    Google Scholar 

  52. L.C. Godara: Application of antenna arrays to mobile communications, Part II: Beam-forming and direction-of-arrival considerations, Proc. IEEE 85, 1195–1245 (1997)

    CrossRef  Google Scholar 

  53. O.L. Frost III: An algorithm for linearly constrained adaptive array processing, Proc. IEEE 60, 926–935 (1972)

    CrossRef  Google Scholar 

  54. I. Cohen: Analysis of two-channel generalized sidelobe canceller (GSC) with post-filtering, IEEE Trans. Speech Audio Process. 11, 684–699 (2003)

    CrossRef  Google Scholar 

  55. C. Marro, Y. Mahieux, K.U. Simmer: Analysis of noise reduction and dereverberation techniques based on microphone arrays with postfiltering, IEEE Trans. Speech Audio Process. 6, 240–259 (1998)

    CrossRef  Google Scholar 

  56. R. Zelinksi: A microphone array with adaptive post-filtering for noise reduction in reverberant rooms, Proc. IEEE ICASSP (1988) pp. 2578–2581

    Google Scholar 

  57. W. Liu: Blind adaptive beamforming for wideband circular arrays, ICASSP Proc. (2009)

    Google Scholar 

  58. N. Epain, C. Jin, A. van Schaik: Blind source separation using independent component analysis in the spherical harmonic domain, Proc. 2nd Int. Symp. Ambisonics and Spherical Acoustics (2010)

    Google Scholar 

  59. M. Ochmann: The source simulation technique for acoustic radiation problems, Acustica 81, 512–527 (1995)

    MATH  Google Scholar 

  60. M. Ochmann: The full-field equations for acoustic radiation and scattering, J. Acoust. Soc. Am. 105(5), 2574–2584 (1999)

    ADS  CrossRef  Google Scholar 

  61. L. Bouchet, T. Loyau: Calculation of acoustic radiation using equivalent-sphere methods, J. Acoust. Soc. Am. 170(5), 2387–2397 (2000)

    ADS  CrossRef  Google Scholar 

  62. M.B.S. Magalhães, R.A. Tenenbaum: Sound source reconstruction techniques: A review of their evolution and new trends, Acust. Acta Acust. 90, 199–220 (2004)

    Google Scholar 

  63. R. Jeans, C. Mathews: The wave superposition method as a robust technique for computing acoustic fields, J. Acoust. Soc. Am. 92(2), 1156–1166 (1992)

    ADS  CrossRef  Google Scholar 

  64. G.H. Koopmann, L. Song, J.B. Fahnline: A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Am. 86, 2433–2438 (1989)

    ADS  CrossRef  Google Scholar 

  65. P.R. Stepanishen: A gerneralized internal source density method for the forward and backward projection of harmonic pressure fields from complex bodies, J. Acoust. Soc. Am. 101, 3270–3277 (1997)

    ADS  CrossRef  Google Scholar 

  66. M.C. Junger, D. Feit: Sound, Structure, and Their Interaction (MIT Press, Cambridge 1972)

    Google Scholar 

  67. F. Fahy, P. Gardonio: Sound and Strucural Vibration, 2nd edn. (Elsevier, Amsterdam 2007)

    Google Scholar 

  68. A. Sommerfeld: Vorlesungen über theoretische Physik. Band IV: Optik (Akademische Verlagsgesellschaft, Heidelberg 1964) p. 170

    Google Scholar 

  69. A. Sommerfeld: Vorlesungen über theoretische Physik. Band II: Mechanik der deformierbaren Medien (Akademische Verlagsgesellschaft, Heidelberg 1976)

    Google Scholar 

  70. P. Morse, K.U. Ingard: Theoretical Acoustics (Princeton Univ. Press, Princeton 1986)

    Google Scholar 

  71. R. Kress: Linear Integral Equations (Springer, Heidelberg 1989)

    CrossRef  MATH  Google Scholar 

  72. A. Kirsch: An Introduction to the Mathematical Theory of Inverse Problems (Springer, Heidelberg 1996)

    CrossRef  MATH  Google Scholar 

  73. H. Schenck: Improved integral formulation for acoustic radiation problems, J. Acoust. Soc. Am. 44, 41–58 (1967)

    ADS  CrossRef  Google Scholar 

  74. A. Pierce: Acoustics (Acoust. Soc. of Am., New York 1991)

    Google Scholar 

  75. J. Hadamard: Lectures on Cauchyʼs Problem in Linear Partial Differential Equations (Yale Univ. Press, New Haven 1923)

    MATH  Google Scholar 

  76. J.D. Meynard, E.G. Williams, Y. Lee: Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH, J. Acoust. Soc. Am. 78(4), 1395–1413 (1985)

    ADS  CrossRef  Google Scholar 

  77. J. Prager: Approximate reconstruction of sound fields close to the source sufrace using spherical nearfield acoustical holography, J. Acoust. Soc. Am. 122(4), 2067–2073 (2007)

    ADS  CrossRef  Google Scholar 

  78. W.A. Veronesi, J.D. Maynard: Digital holographic reconstruction of sources with arbitrarily shaped surfaces, J. Acoust. Soc. Am. 85(2), 588–598 (1988)

    ADS  CrossRef  Google Scholar 

  79. G. Bissinger, E.G. Williams, N. Valdivia: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography, J. Acoust. Soc. Am. 121(6), 3899–3906 (2007)

    ADS  CrossRef  Google Scholar 

  80. E.G. Williams: Fourier Acouostics (Academic, San Diego 1999)

    Google Scholar 

  81. G.B. Arfken, H.J. Weber: Mathematical Methods for Physicists (Elsevier, Amsterdam 2005)

    MATH  Google Scholar 

  82. D.L. Colton, R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory (Springer, Heidelberg 1992)

    CrossRef  MATH  Google Scholar 

  83. E.G. Williams, B.H. Houston, P.C. Herdic: Fast Fourier transform and singular value decomosition formulations for patch nearfield acoustical holography, J. Acoust. Soc. Am. 144(3), 1322–1333 (2003)

    ADS  CrossRef  Google Scholar 

  84. J.B. Fahnline, G.H. Koopmann: A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition, J. Acoust. Soc. Am. 90, 2808–2819 (1991)

    ADS  CrossRef  Google Scholar 

  85. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  86. Z. Wang, S.F. Wu: Helmholtz equation-least-squares method for reconstructing the acoustic pressure field, J. Acoust. Soc. Am. 102(4), 2020–2032 (1995)

    ADS  CrossRef  Google Scholar 

  87. M.R. Bai: Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, J. Acoust. Soc. Am. 92(1), 533–549 (1992)

    ADS  CrossRef  Google Scholar 

  88. R. Scholte, N.B. Roozen, I. Arteaga: Regularization in PNAH by means of L-curve, Proc. Forum Acusticum Budapest (2005) pp. 2579–2583

    Google Scholar 

  89. P.C. Waterman: Matrix formulation of electromagnetic scattering, Proc. IEEE 53, 805–812 (1965)

    CrossRef  Google Scholar 

  90. P.C. Waterman: New formulation of acoustic scattering, J. Acoust. Soc. Am. 45, 1417–1429 (1969)

    ADS  CrossRef  MATH  Google Scholar 

  91. P.A. Martin: On the null field equations for the exterior problems of acoustics, Quart. J. Mech. Appl. Math. 33, 385–396 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  92. D. Colton, R. Kress: The unique solvability of the null field equations of acoustics, Quart. J. Mech. Appl. Math. 36, 87–95 (1983)

    ADS  CrossRef  MATH  MathSciNet  Google Scholar 

  93. D. Colton, R. Kress: Integral Equation Methods in Scattering Theory (Wiley, New York 1983) p. 104

    MATH  Google Scholar 

  94. P.A. Martin: Acoustic scattering and radiation problems, and the null-field method, Wave Motion 4, 391–408 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

  95. R.E. Kleinman, G.F. Roach, S.E.G. Ström: The null field method and modified Green function, Proc. R. Soc. London A 394, 121–136 (1984)

    ADS  CrossRef  MATH  Google Scholar 

  96. M. Ochmann: Die Multipolstrahlersynthese – ein effektives Verfahren zur Berechnung der Schallabstrahlung von schwingenden Strukturen beliebiger Oberflächengestalt, Acustica 72, 233–246 (1990)

    Google Scholar 

  97. M. Ochmann: The complex equivalent source method for sound propagation over an impedance plane, J. Acoust. Soc. Am. 116(6), 3304–3311 (2004)

    ADS  CrossRef  MathSciNet  Google Scholar 

  98. D. Wilton, I. Mathews, R. Jeans: A clarification of nonexistence problems with the superposition method, J. Acoust. Soc. Am. 94, 1676–1680 (1993)

    ADS  CrossRef  MathSciNet  Google Scholar 

  99. L. Bouchet, T. Loyau, N. Hamzaoui, C. Boisson: Calculation of acoustic radiation using equivalent-sphere methods, J. Acoust. Soc. Am. 107, 2387–2397 (2000)

    ADS  CrossRef  Google Scholar 

  100. R. Bader: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology, Springer Series Current Research in Systematic Musicology, Vol. 2 (Springer, Heidelberg 2013)

    CrossRef  Google Scholar 

  101. R. Bader: Characterizing classical guitars using top plate radiation patterns measured by a microphone array, Acust. Acta Acust. 97, 830–839 (2011)

    CrossRef  Google Scholar 

  102. R. Bader: Reconstruction of radiating sound fields using minimum energy method, J. Acoust. Soc. Am. 127(1), 300–308 (2010)

    ADS  CrossRef  Google Scholar 

  103. N. Rayess, S.F. Wu: Experimental validations of the HELS method for reconstructing acoustic radiation from a complex vibrating structure, J. Acoust. Soc. Am. 107(6), 2955–2964 (1999)

    ADS  CrossRef  Google Scholar 

  104. S.F. Wu: On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method, J. Acoust. Soc. Am. 107(5), 2511–2522 (1999)

    ADS  CrossRef  Google Scholar 

  105. S.F. Wu, H. Lu, M.S. Bajwa: Reconstruction of transient acoustic radiation from a sphere, J. Acoust. Soc. Am. 117(4), 2065–2077 (2005)

    ADS  CrossRef  Google Scholar 

  106. S. Wu, J. Yu: Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method, J. Acoust. Soc. Am. 104, 2054–2060 (1998)

    ADS  CrossRef  Google Scholar 

  107. P.R. Stepanishen, S. Ramakrishna: Acoustic radiation from cylinders with a plane of symmetry using internal multi-pole line-source distributions, J. Acoust. Soc. Am. 93, 658–672 (1993)

    ADS  CrossRef  Google Scholar 

  108. P.R. Stepanishen, H.W. Chen: Surface pressure and harmonic loading on shells of revolution using an internal source density method, J. Acoust. Soc. Am. 92, 2248–2259 (1992)

    ADS  CrossRef  Google Scholar 

  109. S. Ramakrishna, P.R. Stepanishen: Acoustic scattering from cylinders with a plane of symmetry using internal multi-pole line-source distributions, J. Acoust. Soc. Am. 93, 673–682 (1993)

    ADS  CrossRef  Google Scholar 

  110. A. Sarkissian: Near-field acoustical holography for an axisymmetric source, J. Acoust. Soc. Am. 88, 199–209 (1990)

    ADS  CrossRef  MathSciNet  Google Scholar 

  111. Z. Wang: Helmholtz equation-least squares (HELS) method for inverse acoustic radiation problems. Ph.D. Thesis (Wayne State Univ., Detroit 1995)

    Google Scholar 

  112. N. Rayess, S.F. Wu: Experimental validations of the HELS method for reconstructing acoustic radiation from a complex vibrating structure, J. Acoust. Soc. Am. 107(6), 2955–2964 (2000)

    ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Bader, R. (2014). Microphone Array. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_29

Download citation