Skip to main content

Inclusion of A Priori Information Using Neural Networks

  • Chapter
  • First Online:
  • 1103 Accesses

Abstract

Microwave image reconstruction is an ill-posed problem. Regularization methods are used to remove the ill-posed answers. However, the regularization methods are often problem independent and have smoothing effects. In this chapter, a novel problem-dependent regularization approach is introduced for the application of breast imaging that exploits a priori information for regularization. A real genetic algorithm (RGA) minimzes a cost functional that is essentially the error between the recorded and simulated data. At each iteration of the RGA, a neural network classifier rejects the solutions that cannot be a map of the dielectric properties of a breast. Although the application presented in this chapter is specific to breast cancer, the idea of using a priori information along with the classification techniques can be generally applied to the scenarios where information about the dielectric properties of the medium exists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Ashtari, Signal processing methods for high resolution microwave image reconstruction, Ph.D. dissertation, University of Manitoba, Winnipeg, Manitoba, Canada, 2009

    Google Scholar 

  2. A. Ashtari, S. Noghanian, A. Sabouni, J. Aronsson, G. Thomas, S. Pistorius, Using a priori information for regularization in breast microwave image reconstruction. IEEE Trans. Biomed. Eng. 57(9), 2197–2208 (2010)

    Article  Google Scholar 

  3. E.C. Fear, M.A. Stuchly, Microwave detection of breast cancer. IEEE Trans. Microw. Theory Tech. 48, 1854–1863 (2000)

    Article  Google Scholar 

  4. E.C. Fear, X. Li, S.C. Hagness, M.A. Stuchly, Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 49, 812–822 (2002)

    Article  Google Scholar 

  5. T. Rubk, P.M. Meaney, P. Meincke, K. Paulsen, Nonlinear microwave imaging for breast–cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans. Antenn. Propag. 55, 2320–2331 (2007)

    Article  Google Scholar 

  6. S. Semenov, P. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, A. Starostin, B. Voinov, M. Taran, G. Tatsis, V. Baranov, Three-dimensional microwave tomography: initial experimental imaging of animals. IEEE Trans. Biomed. Eng. 49, 55–63 (2002)

    Article  Google Scholar 

  7. Q. Fang, P.M. Meaney, S.D. Geimer, A.V. Streltsov, K.D. Paulsen, Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation. IEEE Trans. Med. Imag. 23, 475–484 (2004)

    Article  Google Scholar 

  8. M. Moghaddam, W.C. Chew, Nonlinear two-dimensional velocity profile inversion in the time domain. IEEE Trans. Geosci. Rem. Sens. 30, 147–156 (1992)

    Article  Google Scholar 

  9. S. Caorsi, M. Pastorino, Two-dimensional microwave imaging approach based on a genetic algorithm. IEEE Trans. Antenn. Propag. 48, 370–373 (2000)

    Article  Google Scholar 

  10. E. Bort, G. Franceschini, A. Massa, P. Rocca, Improving the effectiveness of GA-based approaches to microwave imaging through an innovative parabolic crossover. IEEE Antenn. Wireless Propag. Lett. 4, 138–142 (2005)

    Article  Google Scholar 

  11. M. Donelli, G. Franceschini, A. Martini, A.A. Massa, An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Trans. Geosci. Rem. Sens. 44, 298–312 (2006)

    Article  Google Scholar 

  12. G. Tijhuis, K. Belkebir, A. Litman, B. de Hon, Theoretical and computational aspects of 2-D inverse profiling. IEEE Trans. Geosci. Rem. Sens. 39, 1316–1330 (2001)

    Article  Google Scholar 

  13. P.M. van den Berg, R.E. Kleinman, A contrast source inversion method. J. Inverse Probl. 13, 1607–1620 (1997)

    Article  MATH  Google Scholar 

  14. P.M. Meaney, M.W. Fanning, D. Li, S.P. Poplack, K.D. Paulsen, A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 48, 1841–1853 (2000)

    Article  Google Scholar 

  15. A. Abubakar, W. Hu, P.M. van den Berg, T.M. Habashy, A finite-difference contrast source inversion method. Inverse Probl. 24, 1–17 (2008)

    Article  Google Scholar 

  16. X. Xiaoyin, E. Miller, C. Rappaport, Minimum entropy regularization in frequency-wavenumber migration to localize subsurface objects. IEEE Trans. Geosci. Remote Sens. 41, 1804–1812 (2003)

    Article  Google Scholar 

  17. Y. Hirshaut, P.I. Pressman, J. Brody, Breast Cancer: The Complete Guide (Bantam Books, New York, 2008)

    Google Scholar 

  18. M. Lazebnik, D. Popovic, L. McCartney, C.B. Watkins, M.J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T.M. Breslin, W. Temple, D. Mew, J.H. Booske, M. Okoniewski, S.C. Hagness, A large-scale study of the ultrawideband microwave dielectric properties of normal, benign, and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 52, 6093–6115 (2007)

    Article  Google Scholar 

  19. E. Zastrow, S.K. Davis, M. Lazebnik, F. Kelcz, B.D.V. Veen, S.C. Hagness, Database of 3D grid-based numerical breast phantoms for use in computational electromagnetics simulations. University of Wisconsin, Technical Report, 2007. [Online]. Available: http://uwcem.ece.wisc.edu/MRIdatabase/InstructionManual.pdf

  20. S.P. Poplack, K.D. Paulsen, A. Hartov, P.M. Meaney, B. Pogue, T. Tosteson, M. Grove, S. Soho, W. Wells, Electromagnetic breast imaging: pilot results in women with abnormal mammography. Radiology 23, 350–359 (2007)

    Article  Google Scholar 

  21. A. Bulyshev, S. Semenov, A. Souvorov, R. Svenson, A. Nazarov, Y. Sizov, G. Tatsis, Three-dimensional microwave tomography: initial experimental imaging of animals. IEEE Trans. Biomed. Eng. 49, 55–63 (2002)

    Article  Google Scholar 

  22. S. Semenov, R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, A. Pavlovsky, V. Borisov, B. Voinov, G. Simonova, A. Starostin, V. Posukh, G. Tatsis, V. Baranov, Three-dimensional microwave tomography: experimental prototype of the system and vector Born reconstruction method. IEEE Trans. Biomed. Eng. 46, 937–946 (1999)

    Article  Google Scholar 

  23. E.C. Fear, S.C. Hagness, P.M. Meaney, M. Okoniewski, M.A. Stuchly, Enhancing breast tumor detection with near field imaging. IEEE Microw. Mag. 3, 48–56 (2002)

    Article  Google Scholar 

  24. W.C. Chew, Y.M. Wang, Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging 9, 218–225 (1990)

    Article  Google Scholar 

  25. J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  26. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Welsey, New York, 1989)

    MATH  Google Scholar 

  27. F. Herrera, M. Lozano, J.L. Verdegay, Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12, 265–319 (1998)

    Article  MATH  Google Scholar 

  28. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, New York, 1992)

    Book  MATH  Google Scholar 

  29. J.M. Johnson, Y. Ramat-Samii, Genetic algorithms in engineering electromagnetics. IEEE Antenn. Propag. Mag. 39, 7–21 (1997)

    Article  Google Scholar 

  30. S. Caorsi, A. Massa, M. Pastorino, A. Rosani, Microwave medical imaging: potentialities and limitations of a stochastic optimization technique. IEEE Trans. Microw. Theory Tech. 52, 1909–1916 (2004)

    Article  Google Scholar 

  31. G. Franceschini, D. Franceschini, A. Massa, Full-vectorial three-dimensional microwave imaging through the iterative multiscaling strategy, a preliminary assessment. IEEE Geosci. Rem. Sens. Lett. 2, 428–432 (2005)

    Article  Google Scholar 

  32. M. Pastorino, S. Caorsi, A. Massa, A global optimization technique for microwave nondestructive evaluation. IEEE Trans. Instrum. Meas. 51, 666–673 (2002)

    Article  Google Scholar 

  33. X. Chen, K. Huang, X.-B. Xu, Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm with FDTD method. Prog. Electromagn. Res. 53, 283–298 (2005)

    Article  Google Scholar 

  34. T. Williams, E. Fear, D. Westwick, Tissue sensing adaptive radar for breast cancer detection-investigations of an improved skin-sensing method. IEEE Trans. Microw. Theory Tech. 54, 1308–1314 (2006)

    Article  Google Scholar 

  35. K.S. Yee, Numerical solution of initial boundary value problems involving maxwells equations in isotropic media. IEEE Trans. Antenn. Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  36. B. Chen, D. Fang, B.H. Zhou, Modified Berenger PML absorbing boundary condition for FDTD meshes. IEEE Microw. Guid. Wave Lett. 5, 399–401 (1995)

    Article  Google Scholar 

  37. K.S. Kunz, R.J. Luebbers, The Finite Difference Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993)

    Google Scholar 

  38. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000)

    Google Scholar 

  39. D.M. Sullivan, A frequency dependent FDTD method for biological application. IEEE Trans. Microw. Technol. Tech. 40, 532–539 (1992)

    Article  Google Scholar 

  40. A. Sabouni, S. Noghanian, S. Pistorius, Water content and tissue composition effects on microwave tomography results, in Applied Computational Electromagnetics Society Conference, Niagara Falls, Canada, 2008

    Google Scholar 

  41. K. Levenberg, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  42. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Haralick, L. Shapiro, Computer and Robot Vision, ser. Computer and Robot Vision. Addison-Wesley Pub. Co., 1993, no. v. 2. [Online]. Available: http://books.google.com/books?id=LfVRAAAAMAAJ

  44. J.H. Richmond, Scattering by a dielectric cylinder of arbitrary cross-section shape. IEEE Trans. Antenn. Propag. 13, 334–341 (1965)

    Article  Google Scholar 

  45. A. Abubakar, P.M. van den Berg, J. Mallorqui, Imaging of biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans. Microw. Theory Tech. 50, 1761–1771 (2002)

    Article  Google Scholar 

  46. P.M. Meaney, K.D. Paulsen, B.W. Pogue, M.I. Miga, Microwave image reconstruction utilizing log–magnitude and unwrapped phase to improve high-contrast object recovery. IEEE Trans. Med. Imaging 20, 104–116 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noghanian, S., Sabouni, A., Desell, T., Ashtari, A. (2014). Inclusion of A Priori Information Using Neural Networks. In: Microwave Tomography. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0752-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0752-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0751-9

  • Online ISBN: 978-1-4939-0752-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics