Advertisement

Clustering as an Approach to 3D Reconstruction Problem

  • Sergey ArkhangelskiyEmail author
  • Ilya Muchnik
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 92)

Abstract

Numerous applications of information technology are connected with 3D-reconstruction task. One of the important special cases is reconstruction using 3D point clouds that are collected by laser range finders and consumer devices like Microsoft Kinect. We present a novel procedure for 3D image registration that is a fundamental step in 3D objects reconstruction. This procedure reduces the task complexity by extracting small subset of potential matches which is enough for accurate registration. We obtain this subset as a result of clustering procedure applied to the broad set of potential matches, where the distance between matches reflects their consistency. Furthermore, we demonstrate the effectiveness of the proposed approach by a set of experiments in comparison with state-of-the-art techniques.

Keywords

3D object reconstruction Cluster analysis applications Point set registration 

References

  1. 1.
    Forest, J., Salvi, J.: An overview of laser slit 3d digitasers. In: International Conference on Robots and Systems, vol. 1, pp. 73–78 (2002)Google Scholar
  2. 2.
    Ullrich, A., Studnicka, N., Riegl, J., Orlandini, S.: Long-range high-performance time-of-flight-based 3D imaging sensors. In: Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission, 2002, pp. 852–855. IEEE, New York (2002)Google Scholar
  3. 3.
    Matabosch, C., Salvi, J., Forest, J.: Stereo rig geometry determination by fundamental matrix decomposition. In: Workshop on European Scientific and Industrial Collaboration, vol. 2, pp. 405–412 (2003)Google Scholar
  4. 4.
    Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: Computer Vision-ECCV 2004, pp. 558–569. Springer, Berlin (2004)Google Scholar
  5. 5.
    Myronenko, A., Song, X.S.X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  6. 6.
    Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings 1991 IEEE International Conference on Robotics and Automation, pp. 2724–2729. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  8. 8.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  9. 9.
    Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)CrossRefGoogle Scholar
  10. 10.
    Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)CrossRefGoogle Scholar
  11. 11.
    Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1229–1234 (1999)CrossRefGoogle Scholar
  12. 12.
    Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-Points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27(3), 1 (2008)CrossRefGoogle Scholar
  13. 13.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Opt. Soc. Am. 4, 629–642 (1987)CrossRefGoogle Scholar
  14. 14.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)CrossRefGoogle Scholar
  15. 15.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. Int. J. Comput. Vis. 18(2), 99–119 (1996)CrossRefGoogle Scholar
  17. 17.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D registration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)Google Scholar
  18. 18.
    Brunnstrom, K., Stoddart, A.J.: Genetic algorithms for free-form surface matching. In: Proceedings of the 13th International Conference on Pattern Recognition, August 1996, vol. 4, pp. 689–693. IEEE, New York (1996)Google Scholar
  19. 19.
    Chow, C.K., Tsui, H.T., Lee, T.: Surface registration using a dynamic genetic algorithm. Pattern Recognit. 37(1), 105–117 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex three-dimensional scenes. Image Vis. Comput. 16(9–10), 635–651 (1998)CrossRefGoogle Scholar
  21. 21.
    Albarelli, A., Rodola, E., Torsello, A.: A game-theoretic approach to fine surface registration without initial motion estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2010, pp. 430–437. IEEE, New York (2010)Google Scholar
  22. 22.
    Mirkin, B., Muchnik, I.: Combinatoral optimization in clustering. In: Handbook of Combinatorial Optimization, pp. 1007–1075. Springer, New York (1999)Google Scholar
  23. 23.
    Mirkin, B., Muchnik, I.: Layered clusters of tightness set functions. Appl. Math. Lett. 15(2), 147–151 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Computer Vision—ECCV 2010, pp. 356–369 (2010)Google Scholar
  25. 25.
    Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Approximation Algorithms for Combinatorial Optimization, pp. 84–95 (2000)Google Scholar
  26. 26.
    Le, T.V., Kulikowski, C.A., Muchnik, I.B.: Coring method for clustering a graph. In: 19th International Conference on Pattern Recognition (ICPR 2008), December 2008, pp. 1–4. IEEE, New York (2008)Google Scholar
  27. 27.
    Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’96, pp. 313–324. ACM, New York (1996)Google Scholar
  28. 28.
    Rusu, R.B.: Point Cloud Library. Willow Garage, Menlo Park (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.MoscowRussia
  2. 2.DIMACS, Rutgers UniversityNew BrunswickUSA

Personalised recommendations