Advertisement

Thinking Ultrametrically, Thinking p-Adically

  • Fionn MurtaghEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 92)

Abstract

We describe the use of ultrametric topology and closely associated p-adic number theory in a wide range of fields that all share strong elements of common mathematical and computational underpinnings. These include data analysis, including in the “big data” world of massive and high dimensional data sets; physics at very small scales; search and discovery in general information spaces; and in logic and reasoning.

Keywords

Data analytics Multivariate data analysis Pattern recognition Information storage and retrieval Clustering Hierarchy p-Adic Ultrametric topology Complexity 

References

  1. 1.
    Benedetto, R.L.: Examples of wavelets for local fields. In: Larson, D., Heil, C., Jorgensen, P. (eds.) Wavelets, Frames, and Operator Theory, Contemporary Mathematics, American Mathematical Society (Providence, RI) vol. 345, pp. 27–47 (2004)Google Scholar
  2. 2.
    Benedetto, J.J., Benedetto, R.L.: A wavelet theory for local fields and related groups. J. Geom. Anal. 14, 423–456 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Benzécri, J.-P.: L’Analyse des Données. Tome I. Taxinomie, 2nd edn. Dunod, Paris (1979)Google Scholar
  4. 4.
    Bradley, P.E.: Mumford dendrograms. Comput. J. 53, 393–404 (2010)CrossRefGoogle Scholar
  5. 5.
    Brekke, L., Freund, P.G.O.: p-Adic numbers in physics. Phys. Rep. 233, 1–66 (1993)Google Scholar
  6. 6.
    Bustos, D., Navarro, G., Chávez, E.: Pivot selection techniques for proximity searching in metric spaces. Pattern Recognit. Lett. 24, 2357–2366 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chakraborty, P.: Looking through newly to the amazing irrationals. Technical report (2005). arXiv: math.HO/0502049v1Google Scholar
  8. 8.
    Chávez, E., Navarro, G.: Probabilistic proximity search: fighting the curse of dimensionality in metric spaces. Inf. Process. Lett. 85, 39–46 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)CrossRefGoogle Scholar
  10. 10.
    Contreras, P.: Search and Retrieval in Massive Data Collections. Ph.D. thesis, Royal Holloway, University of London (2011)Google Scholar
  11. 11.
    Contreras, P., Murtagh, F.: Evaluation of hierarchies based on the longest common prefix, or Baire, metric, 2007. In: Classification Society of North America (CSNA) Meeting, University of Illinois, Urbana-Champaign, IL (2007)Google Scholar
  12. 12.
    Contreras, P., Murtagh, F.: Fast, linear time hierarchical clustering using the Baire metric. J. Classif. 29, 118–143 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Contreras, P., Murtagh, F.: Linear time Baire hierarchical clustering for enterprise information retrieval. Int. J. Softw. Inform. 6(3), 363–380 (2012)Google Scholar
  14. 14.
    Critchley, F., Heiser, W.: Hierarchical trees can be perfectly scaled in one dimension. J. Classif. 5, 5–20 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Delon, F.: Espaces ultramétriques. J. Symb. Logic 49, 405–502 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Deutsch, S.B., Martin, J.J.: An ordering algorithm for analysis of data arrays. Oper. Res. 19, 1350–1362 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Donoho, D.L., Tanner, J.: Neighborliness of randomly-projected simplices in high dimensions. Proc. Natl. Acad. Sci. 102, 9452–9457 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Dragovich, B., Dragovich, A.: p-Adic modelling of the genome and the genetic code. Comput. J. 53, 432–442 (2010)Google Scholar
  20. 20.
    Dragovich, B., Khrennikov, A.Yu., Kozyrev, S.V., Volovich, I.V.: On p-adic mathematical physics. p-Adic Numbers Ultrametric Anal. Appl. 1, 1–27 (2009)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Ezhov, A.A., Khrennikov, A.Yu.: On ultrametricity and a symmetry between Bose-Einstein and Fermi-Dirac systems. In: AIP Conferences Proceedings 826, p-Adic Mathematical Physics, 2nd International Conference, pp. 55–64. American Institute of Physics, Melville (2006)Google Scholar
  22. 22.
    Ezhov, A.A., Khrennikov, A.Yu., Terentyeva, S.S.: Indications of a possible symmetry and its breaking in a many-agent model obeying quantum statistics. Phys. Rev. E, 77 (2008). Article number 031126Google Scholar
  23. 23.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)CrossRefGoogle Scholar
  24. 24.
    Foote, R.: Mathematics and complex systems. Science 318, 410–412 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Freund, P.G.O.: p-Adic strings and their applications. In: Rakic, Z., Dragovich, B., Khrennikov, A., Volovich, I. (eds.) Proceedings of 2nd International Conference on p-Adic Mathematical Physics, pp. 65–73. American Institute of Physics, Melville (2006)Google Scholar
  26. 26.
    Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Trans. Comput. C-24, 750–753 (1975)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Gajić, L.: On ultrametric space. Novi Sad J. Math. 31, 69–71 (2001)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999) [Formale Begriffsanalyse. Mathematische Grundlagen. Springer, Berlin (1996)]CrossRefzbMATHGoogle Scholar
  29. 29.
    Gouvêa, F.Q.: p-Adic Numbers: An Introduction. Springer, Berlin (2003)Google Scholar
  30. 30.
    Hall, P., Marron, J.S., Neeman, A.: Geometric representation of high dimensional, low sample size data. J. R. Stat. Soc. B 67, 427–444 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Hitzler, P., Seda, A.K.: The fixed-point theorems of Priess-Crampe and Ribenboim in logic programming. Fields Inst. Commun. 32, 219–235 (2002)MathSciNetGoogle Scholar
  32. 32.
    Hjaltason, G.R., Samet, H.: Properties of embedding methods for similarity searching in metric spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 530–549 (2003)CrossRefGoogle Scholar
  33. 33.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River (1988)zbMATHGoogle Scholar
  34. 34.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)CrossRefGoogle Scholar
  35. 35.
    Janowitz, M.F.: An order theoretic model for cluster analysis. SIAM J. Appl. Math. 34, 55–72 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Janowitz, M.F.: Cluster analysis based on abstract posets. Technical report (2005–2006)Google Scholar
  37. 37.
    Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)CrossRefGoogle Scholar
  38. 38.
    Khrennikov, A.Yu.: Gene expression from polynomial dynamics in the 2-adic information space. Technical report (2009)Google Scholar
  39. 39.
    Krasner, M.: Nombres semi-réels et espaces ultramétriques. C. R. Acad. Sci., Tome II 219, 433 (1944)Google Scholar
  40. 40.
    Lerman, I.C.: Classification et Analyse Ordinale des Données. Dunod, Paris (1981)zbMATHGoogle Scholar
  41. 41.
    Levy, A.: Basic Set Theory. Dover, Mineola (2002) [Springer, 1979]zbMATHGoogle Scholar
  42. 42.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)CrossRefGoogle Scholar
  43. 43.
    March, S.T.: Techniques for structuring database records. Comput. Surv. 15, 45–79 (1983)CrossRefzbMATHGoogle Scholar
  44. 44.
    McCormick, W.T., Schweitzer, P.J., White, T.J.: Problem decomposition and data reorganization by a clustering technique. Oper. Res. 20, 993–1009 (1982)CrossRefGoogle Scholar
  45. 45.
    Mirkin, B.: Mathematical Classification and Clustering. Kluwer, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  46. 46.
    Mirkin, B.: Linear embedding of binary hierarchies and its applications. In: Mirkin, B., McMorris, F., Roberts, F., Rzhetsky, A. (eds.) Mathematical Hierarchies and Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 37, pp. 331–356. American Mathematical Society, Providence (1997)Google Scholar
  47. 47.
    Mirkin, B.: Clustering for Data Mining. Chapman and Hall/CRC, Boca Raton (2005)CrossRefzbMATHGoogle Scholar
  48. 48.
    Mirkin, B., Fishburn, P.: Group Choice. V.H. Winston, Washington (1979)zbMATHGoogle Scholar
  49. 49.
    Murtagh, F.: Counting dendrograms: a survey. Discrete Appl. Math. 7, 191–199 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Murtagh, F.: Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg/Vienna (1985)zbMATHGoogle Scholar
  51. 51.
    Murtagh, F.: On ultrametricity, data coding, and computation. J. Classif. 21, 167–184 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Murtagh, F.: Quantifying ultrametricity. In: Antoch, J. (ed.) COMPSTAT 2004 – Proceedings in Computational Statistics, pp. 1561–1568. Springer, Berlin (2004)Google Scholar
  53. 53.
    Murtagh, F.: Thinking ultrametrically. In: Banks, D., House, L., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications. Proceedings of the Meeting of the International Federation of Classification Societies (IFCS), pp. 3–14. Springer, Berlin (2004)CrossRefGoogle Scholar
  54. 54.
    Murtagh, F.: Identifying the ultrametricity of time series. Eur. Phys. J. B 43, 573–579 (2005)CrossRefGoogle Scholar
  55. 55.
    Murtagh, F.: The Haar wavelet transform of a dendrogram. J. Classif. 24, 3–32 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Murtagh, F.: The remarkable simplicity of very high dimensional data: application to model-based clustering. J. Classif. 26, 249–277 (2009)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Murtagh, F.: Symmetry in data mining and analysis: a unifying view based on hierarchy. Proc. Steklov Inst. Math. 265, 177–198 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Murtagh, F.; The correspondence analysis platform for uncovering deep structure in data and information (6th Annual Boole Lecture). Comput. J. 53, 304–315 (2010)CrossRefGoogle Scholar
  59. 59.
    Murtagh, F.: Ultrametric model of mind, II: application to text content analysis. p-Adic Numbers Ultrametric Anal. Appl. 4(3), 207–221 (2012)MathSciNetGoogle Scholar
  60. 60.
    Murtagh, F., Downs, G., Contreras, P.: Hierarchical clustering of massive, high dimensional data sets by exploiting ultrametric embedding. SIAM J. Sci. Comput. 30, 707–730 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Ostrowski, A.: Über einige Lösungen der Funktionalgleichung ϕ(x) ⋅ ϕ(y) −ϕ(xy). Acta Math. 41, 271–284 (1918)Google Scholar
  62. 62.
    Rammal, R., Angles d’Auriac, J.C., Doucot, B.: On the degree of ultrametricity. J. Phys. Lett. 46, L-945–L-952 (1985)Google Scholar
  63. 63.
    Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicists. Rev. Mod. Phys. 58(3), 765–788 (1986)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups, 2nd edn. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  65. 65.
    Rizzi, A.: Ultrametrics and p-adic numbers. In: Gaul, W., Opitz, O., Schader, M. (eds.) Data Analysis: Scientific Modeling and Practical Application, pp. 325–324. Springer, Berlin (2000)CrossRefGoogle Scholar
  66. 66.
    Schikhof, W.H.: Ultrametric Calculus. Cambridge University Press, Cambridge (1984) [Chaps. 18–21]Google Scholar
  67. 67.
    Seda, A.K., Hitzler, P.: Generalized distance functions in the theory of computation. Comput. J. 53, 443–464 (2010)CrossRefGoogle Scholar
  68. 68.
    Sibson, R.: SLINK: an optimally efficient algorithm for the single link cluster method. Comput. J. 16, 30–34 (1973)CrossRefMathSciNetGoogle Scholar
  69. 69.
    Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)Google Scholar
  70. 70.
    Steinley, D.: K-means clustering: a half-century synthesis. Br. J. Math. Stat. Psychol. 59, 1–34 (2006)CrossRefMathSciNetGoogle Scholar
  71. 71.
    Steinley, D., Brusco, M.J.: Initializing K-means batch clustering: a critical evaluation of several techniques. J. Classif. 24, 99–121 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  72. 72.
    Van Mechelen, I., Bock, H.-H., De Boeck, P.: Two-mode clustering methods: a structured overview. Stat. Methods Med. Res. 13, 363–394 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  73. 73.
    van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  74. 74.
    Van Rooij, A.C.M.: Non-Archimedean Functional Analysis. Dekker, New York (1978)zbMATHGoogle Scholar
  75. 75.
    Vempala, S.S.: The Random Projection Method. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 65. American Mathematical Society, Providence (2004)Google Scholar
  76. 76.
    Volovich, I.V.: Number theory as the ultimate physical theory. Technical report (1987) Preprint No. TH 4781/87, CERN, GenevaGoogle Scholar
  77. 77.
    Volovich, I.V.: p-Adic string. Class. Quantum Gravity 4, L83–L87 (1987)CrossRefMathSciNetGoogle Scholar
  78. 78.
    Volovich, I.V.: Number theory as the ultimate physical theory. p-Adic Numbers Ultrametric Anal. Appl. 2, 77–87 (2010)zbMATHMathSciNetGoogle Scholar
  79. 79.
    Weyl, H.: Symmetry. Princeton University Press, Princeton (1983)Google Scholar
  80. 80.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Computer Science and InformaticsDe Montfort UniversityLeicesterUK

Personalised recommendations