Skip to main content

Molecular Communication Among Nanomachines

  • Chapter
  • First Online:
Molecular Communications and Nanonetworks

Abstract

In this chapter, the concept of molecular communication and nanonetwork is introduced. After briefly discussing the existing and envisioned nanomachines, nanorobots, and genetically engineered machines, it is examined why these machines need to communicate and interconnect to form a nanonetwork in sophisticated nano- and biotechnology applications. Then, molecular communication paradigms (including nature-made molecular communication mechanisms), which can be used for designing nanonetworks, are introduced. These molecular communication paradigms are categorized into two main types, i.e., passive molecular communications (PMC) and active molecular communications (AMC). Finally, the organization of the book is presented to determine how PMC and AMC will be detailed in the remainder of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson H et al (2000) Amorphous computing. Communications of the ACM 43.(5):74–82

    Google Scholar 

  2. Balzani V, Credi A, Silvi S, Venturi M (2006) Artificial nanomachines based on interlocked molecular species: recent advances. Chem Soc Rev 35:1135–1149

    Article  Google Scholar 

  3. Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A (2005) Dream nanomachines. Adv Mater 17:3011–3018

    Article  Google Scholar 

  4. Roukes M (2001) Nanoelectromechanical systems face the future. Phys World 14:25–31

    Google Scholar 

  5. Despont M, Brugger J, Drechsler U, Dürig U, Häberle, W, Lutwyche M, Rothuizen, H, Stutz R et al (2000) VLSI-NEMS chip for parallel AFM data storage. Sens Actuators A Phys 80:100–107

    Article  Google Scholar 

  6. Drexler E (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New York

    Google Scholar 

  7. Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52:2260–2279

    Article  Google Scholar 

  8. Whitesides GM (2001) The once and future nanomachine. Sci Am 285:70–75

    Google Scholar 

  9. Soong RK, Bachand D, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558

    Article  Google Scholar 

  10. Montemagno CD, Bachand GD (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10:225–331

    Article  Google Scholar 

  11. Bachand GD, Montemagno CD (2000) Constructing organic/inorganic NEMS devices powered by biomolecular motors. Biomed Microdevices 2:179–184

    Article  Google Scholar 

  12. Sherman WB, Nadrian CS (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    Article  Google Scholar 

  13. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  Google Scholar 

  14. Gao Y, Yoshio B (2002) Nanotechnology: carbon nanothermometer containing gallium. Nature 415:599

    Article  Google Scholar 

  15. Fennimore AM et al (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410

    Article  Google Scholar 

  16. Requicha AAG, Baur C, Bugacov A, Gazen BC, Koel B, Madhukar A, Ramachandran TR, Resch R, Will P (1998) Nanorobotic assembly of two-dimensional structures. In: Proceedings of IEEE international conference on robotics and automation, pp 3368–3374

    Google Scholar 

  17. Sitti M, Hashimoto H (1998) Tele-nanorobotics using atomic force microscope. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 1739–1746

    Google Scholar 

  18. Freitas RA Jr (1999) Nanomedicine, volume I: basic capabilities. Landes Bioscience, Georgetown

    Google Scholar 

  19. Mavroidis C, Ferreira A (2013) Nanorobotics: past, present, and future. In: Nanorobotics. Springer, New York, pp 3–27

    Book  Google Scholar 

  20. Fukuda T, Arai F, Dong L (2003) Assembly of nanodevices with carbon nanotubes through nanorobotic manipulation. Proc IEEE 91(11):1803–1818

    Article  Google Scholar 

  21. Fukuda T, Arai F, Dong L (2005) Nanorobotic systems. Int J Adv Robot Syst 2(3):264–275

    Google Scholar 

  22. Dubey A, Mavroidis C, Thornton A, Nikitczuk KP, Yarmush ML (2003) Viral protein linear (VPL) nano-actuators. In: Proceedings of IEEE NANO, San Francisco, CA, 12–14 Aug 2003, vol 2, pp 140–143

    Google Scholar 

  23. Dubey A, Sharma G, Mavroidis C, Tomassone SM, Nikitczuk KP, Yarmush ML (2004) Dynamics and kinematics of viral protein linear nano-actuators for bio-nano robotic systems. In: Proceedings of IEEE international conference of robotics and automation, New Orleans, LA, 26 April–1 May 2004, pp 1628–1633

    Google Scholar 

  24. Mavroidis C, Dubey A, Yarmush M (2004) Molecular machines. Ann Rev Biomed Eng 6:363–395

    Article  Google Scholar 

  25. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    Article  Google Scholar 

  26. Dubey A, Mavroidis C, Tomassone SM (2006) Molecular dynamic studies of viral-protein based nano-actuators. J Comput Theor Nanosci 3(6):885–897

    Article  Google Scholar 

  27. Sharma G, Rege K, Budil D, Yarmush M, Mavroidis C (2008) Reversible pH-controlled DNA binding peptide nano-tweezers–an in-silico study. Int J Nanomed 3(4):505–521

    Google Scholar 

  28. Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Ann Rev Biomed Eng 13:157–184

    Article  Google Scholar 

  29. Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458:1121–1122

    Article  Google Scholar 

  30. Darnton N, Turner L, Breuer K, Berg HC (2004) Moving fluid with bacterial carpets. Biophys J 86(3):1863–1870

    Article  Google Scholar 

  31. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865

    Article  Google Scholar 

  32. Requicha AAG (2003) Nanorobots, NEMS, and nanoassembly. Proc IEEE 91(11):1922–1933

    Article  Google Scholar 

  33. Braitenberg V (1986) Vehicles: experiments in synthetic psychology. MIT press, Cambridge

    Google Scholar 

  34. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3(3):318–356

    Article  Google Scholar 

  35. Cases I, de Lorenzo V (2010) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8(3):213–222.

    Google Scholar 

  36. Antunes MS, Ha SB, Tewari-Singh N, Morey KJ, Trofka AM, Kugrens P et al (2006) A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a reset capacity. Plant Biotechnol J 4(6):605–622

    Article  Google Scholar 

  37. Bowen TA, Zdunek JK, Medford JI (2008) Cultivating plant synthetic biology from systems biology. New Phytol 179(3):583–587

    Article  Google Scholar 

  38. Savage DF, Way J, Silver PA (2008) Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol 3(1):13–16

    Article  Google Scholar 

  39. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nature Rev Mol Cell Biol 10(6):410–422

    Article  Google Scholar 

  40. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(1):1–14

    Google Scholar 

  41. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, New York

    Google Scholar 

  42. Tkačik G, Walczak AM (2011) Information transmission in genetic regulatory networks: a review. J Phys Condens Matter 23(15):153102

    Article  Google Scholar 

  43. Karlson P, Lüscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    Article  Google Scholar 

  44. Shorey HH (1976) Animal communication by pheromones. Academic, New York

    Google Scholar 

  45. Atakan B, Akan OB, Balasubramaniam S (2012) Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun Mag 50(1): 28–34

    Article  Google Scholar 

  46. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429(6990):423–429

    Article  Google Scholar 

  47. Wang WD, Chen ZT, Kang BG, Li R (2008) Construction of an artificial inter-cellular communication network using the nitric oxide signaling elements in mammalian cells. Exp Cell Res 314(4):699–706

    Article  Google Scholar 

  48. Nakano T et al (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans NanoBiosci 11(2):135–148

    Article  Google Scholar 

  49. Freitas RA (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3(4):243–246

    Article  MathSciNet  Google Scholar 

  50. Moritani Y, Hiyama S, Suda T (2006) Molecular communication for health care applications. In: Proceedings of pervasive computing and communications workshops

    Google Scholar 

  51. Malak D, Akan OB (2012) Molecular communication nanonetworks inside human body. Nano Commun Netw 3(1):19–35

    Article  Google Scholar 

  52. Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8(1):23–33

    Article  Google Scholar 

  53. Ray TS (1993) An evolutionary approach to synthetic biology: Zen and the art of creating life. Artif Life 1:179–209

    Article  Google Scholar 

  54. Tessier D, Radu I, Filteau M (2005) Antimicrobial fabrics coated with nano-sized silver salt crystals. In: Proceedings of NSTI nanotechnology, vol 1, pp 762–764

    Google Scholar 

  55. Endres RG, Wingreen NS (2008) Accuracy of direct gradient sensing by single cells. Proc Natl Acad Sci 105(41):15749–15754

    Article  Google Scholar 

  56. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nature Biotechnol 21(10):1184–1191

    Article  Google Scholar 

  57. Moritani Y, Hiyama S, Suda T (2006) Molecular communication among nanomachines using vesicles. In: Proceedings of NSTI nanotechnology conference

    Google Scholar 

  58. Langer R (2001) Drugs on target. Science 293(5527):58–59

    Article  Google Scholar 

  59. Hiyama S, Moritani Y, Suda T, Egashira R, Enomoto A, Moore M, Nakano T (2005) Molecular communication. In: Proceedings of NSTI nanotechnology conference, vol 3, pp 392–395

    Google Scholar 

  60. Nakano T, Suda T, Moore M, Egashira R, Enomoto A, Arima K (2005) Molecular communication for nanomachines using intercellular calcium signaling. In: Proceedings of IEEE conference on nanotechnology, pp 478–481

    Google Scholar 

  61. Nakano T, Hsu Y H, Tang W C, Suda T, Lin D, Koujin T, Hiraoka Y (2008) Microplatform for intercellular communication. In: Proceedings of IEEE international conference on nano/micro engineered and molecular systems, pp 476–479

    Google Scholar 

  62. Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y (2008) Molecular communication through gap junction channels. Trans Comput Syst Biol X 5410:81–99

    Article  Google Scholar 

  63. Nakano T, Koujin T, Suda T, Hiraoka Y, Haraguchi T (2009) A locally induced increase in intracellular propagates cell-to-cell in the presence of plasma membrane atpase inhibitors in non-excitable cells. FEBS Lett 583(22):3593–3599

    Article  Google Scholar 

  64. Moore M, Enomoto A, Nakano T, Egashira R, Suda T, Kayasuga A, Oiwa K (2006) A design of a molecular communication system for nanomachines using molecular motors. In: Proceedings of IEEE pervasive computing and communications workshops

    Google Scholar 

  65. Enomoto A, Moore M, Nakano T, Egashira R, Suda T, Kayasuga A, Oiwa K (2006) A molecular communication system using a network of cytoskeletal filaments. In: Proceedings of NSTI nanotechnology conference

    Google Scholar 

  66. Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K (2008) Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4):410–415

    Article  Google Scholar 

  67. Hess H, Matzke CM, Doot RK, Clemmens J, Bachand GD, Bunker BC, Vogel V (2003) Molecular shuttles operating undercover: a new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett 3(12):1651–1655

    Article  Google Scholar 

  68. Gregori M, Akyildiz IF (2010) A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors. IEEE J Sel Areas Commun 8(4):612–619

    Article  Google Scholar 

  69. Cobo LC, Akyildiz IF (2010) Bacteria-based communication in nanonetworks. Nano Commun Netw 1(4):244–256

    Article  Google Scholar 

  70. Gregori M, Llatser I, Cabellos-Aparicio A, Alarcón E (2011) Physical channel characterization for medium-range nanonetworks using flagellated bacteria. Comput Netw 55(3):779–791

    Article  MATH  Google Scholar 

  71. Guney A, Atakan B, Akan OB (2012) Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans Mobile Comput 11(3):353–366

    Article  Google Scholar 

  72. Hiyama S, Yuki M (2010) Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems. Nano Communication Networks 1(1): 20–30

    Article  Google Scholar 

  73. Teuscher C et al (2011) Challenges and promises of nano and bio communication networks. In: Proceedings of Fifth IEEE/ACM International Symposium on Networks on Chip (NoCS) pp 247–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atakan, B. (2014). Molecular Communication Among Nanomachines. In: Molecular Communications and Nanonetworks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0739-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0739-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0738-0

  • Online ISBN: 978-1-4939-0739-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics