Skip to main content

Implementation of Genome Sequencing Assays

  • Chapter
  • First Online:
Genomic Applications in Pathology
  • 2140 Accesses

Abstract

As next-generation sequencing (NGS) technologies become more feasible and cost effective, they are increasingly implemented by clinical laboratories as an important platform for their test menu offering. Laboratory directors need to be prepared for the numerous challenges and obstacles associated with the implementation of NGS technologies. These include the need to select an appropriate platform based on the purpose of the test, to recruit appropriately trained technical and bioinformatics personnel, to store large amounts of data, to perform appropriate test validation, to ensure appropriate informed consent, and to provide useful result reporting. Guideline documents have only recently started to emerge in the area of NGS, and those laboratories which are already using this technology currently apply existing clinical laboratory regulations to this novel category of high-complexity testing. Nevertheless, NGS technology holds great promise for the future despite some currently perceived barriers to implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrijver I, Aziz N, Farkas DH, Furtado M, Gonzalez AF, Greiner TC, Grody WW, Hambuch T, Kalman L, Kant JA, Klein RD, Leonard DG, Lubin IM, Mao R, Nagan N, Pratt VM, Sobel ME, Voelkerding KV, Gibson JS. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn. 2012;14(6):525–40. doi:10.1016/j.jmoldx.2012.04.006. Epub 2012 Aug 20. PubMed PMID: 22918138.

    Article  PubMed  CAS  Google Scholar 

  2. Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, Lu F, Lyon E, Voelkerding KV, Zehnbauer BA, Agarwala R, Bennett SF, Chen B, Chin EL, Compton JG, Das S, Farkas DH, Ferber MJ, Funke BH, Furtado MR, Ganova-Raeva LM, Geigenmüller U, Gunselman SJ, Hegde MR, Johnson PL, Kasarskis A, Kulkarni S, Lenk T, Liu CS, Manion M, Manolio TA, Mardis ER, Merker JD, Rajeevan MS, Reese MG, Rehm HL, Simen BB, Yeakley JM, Zook JM, Lubin IM. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30(11):1033–6.

    Article  PubMed  CAS  Google Scholar 

  3. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ, Funke BH, Hegde MR, Lyon E, Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Commitee. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–47.

    Google Scholar 

  4. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol. 2011;29(10):908–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11(5):759–69.

    Article  PubMed  CAS  Google Scholar 

  6. Kohane IS, Masys DR, Altman RB. The incidentalome: a threat to genomic medicine. JAMA. 2006;296(2):212–5.

    Article  PubMed  CAS  Google Scholar 

  7. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, McGuire AL, Nussbaum RL, O’Daniel JM, Ormond KE, Rehm HL, Watson MS, Williams MS, Biesecker LG, American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15(7):565–74.

    Google Scholar 

  8. Strom SP, Lee H, Das K, Vilain E, Nelson SF, Grody WW, Deignan JL. Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory. Genet Med. 2014. doi:10.1038/gim.2013.183.

  9. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, Lyon E, Ward BE, Molecular Subcommittee of the ACMG Laboratory Quality Assurance Committee. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10(4):294–300.

    Article  PubMed  CAS  Google Scholar 

  10. Ledergerber C, Dessimoz C. Base-calling for next-generation sequencing platforms. Brief Bioinform. 2011;12(5):489–97.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 2010;11(5):473–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Jennings L, van Deerlin VM, Gulley ML, College of American Pathologists Molecular Pathology Resource Committee. Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med. 2009;133(5):743–55.

    PubMed  Google Scholar 

  13. Mattocks CJ, Morris MA, Matthijs G, Swinnen E, Corveleyn A, Dequeker E, Müller CR, Pratt V, Wallace A, EuroGentest Validation Group. A standardized framework for the validation and verification of clinical molecular genetic tests. Eur J Hum Genet. 2010;18(12):1276–88.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC. The diploid genome sequence of an individual human. PLoS Biol. 2007;5(10):e254.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richards CS, Palomaki GE, Lacbawan FL, Lyon E, Feldman GL. Three-year experience of a CAP/ACMG methods-based external proficiency testing program for laboratories offering DNA sequencing for rare inherited disorders. Genet Med. 2013;16:25–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deignan, J.L. (2015). Implementation of Genome Sequencing Assays. In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics