Skip to main content

Circulating Cell-Free DNA for Molecular Diagnostics and Therapeutic Monitoring

  • Chapter
  • First Online:
Genomic Applications in Pathology
  • 2199 Accesses

Abstract

The presence of cell-free circulating DNA has been known for many years, but only recently has this knowledge been translated for diagnosis and therapeutic monitoring. In part this is due to the fact that technologies to accurately assess these molecules did not exist. The ability to detect rare DNA molecules in the circulation, such as fetal genetic anomalies and cancer DNA, required advances in technology that have only recently become available. In this chapter, we review the history of circulating DNA, technologies for identifying and measuring circulating DNA, and newer applications that are promising to become new standards of care for clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’homme. C R Acad Sci Paris. 1948;142:241–3.

    CAS  Google Scholar 

  2. Lam NY, et al. Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation. 2006;68(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  3. Antonatos D, et al. Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci. 2006;1075:278–81.

    Article  PubMed  CAS  Google Scholar 

  4. Saukkonen K, et al. Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med. 2007;33(9):1624–7.

    Article  PubMed  CAS  Google Scholar 

  5. Sandhu HS, et al. Measurement of circulating neuron-specific enolase mRNA in diabetes mellitus. Ann N Y Acad Sci. 2008;1137:258–63.

    Article  PubMed  CAS  Google Scholar 

  6. Choi JJ, Reich III CF, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology. 2005;115(1):55–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Stroun M, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–8.

    Article  PubMed  CAS  Google Scholar 

  8. Jahr S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    PubMed  CAS  Google Scholar 

  9. Diehl F, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102(45):16368–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Diehl F, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Lo YM, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta. 2007;1775(1):181–232.

    PubMed  CAS  Google Scholar 

  13. Emlen W, Mannik M. Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin Exp Immunol. 1984;56(1):185–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Chang CP, et al. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta. 2003;327(1–2):95–101.

    Article  PubMed  CAS  Google Scholar 

  15. Wimberger P, et al. Impact of platinum-based chemotherapy on circulating nucleic acid levels, protease activities in blood and disseminated tumor cells in bone marrow of ovarian cancer patients. Int J Cancer. 2011;128(11):2572–80.

    Article  PubMed  CAS  Google Scholar 

  16. Lo YM, et al. Plasma DNA as a prognostic marker in trauma patients. Clin Chem. 2000;46(3):319–23.

    PubMed  CAS  Google Scholar 

  17. Chiu TW, et al. Plasma cell-free DNA as an indicator of severity of injury in burn patients. Clin Chem Lab Med. 2006;44(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  18. Rhodes A, et al. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care. 2006;10(2):R60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herzenberg LA, et al. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A. 1979;76(3):1453–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Lo YM, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.

    Article  PubMed  CAS  Google Scholar 

  21. Dennis Lo YM, Chiu RW. Prenatal diagnosis: progress through plasma nucleic acids. Nat Rev Genet. 2007;8(1):71–7.

    Article  Google Scholar 

  22. Li Y, et al. Cell-free DNA in maternal plasma: is it all a question of size? Ann N Y Acad Sci. 2006;1075:81–7.

    Article  PubMed  CAS  Google Scholar 

  23. Lo YM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Lun FM, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54(10):1664–72.

    Article  PubMed  CAS  Google Scholar 

  25. Vainer OB, et al. A new Y chromosome marker for noninvasive fetal gender determination. Ann N Y Acad Sci. 2008;1137:157–61.

    Article  PubMed  CAS  Google Scholar 

  26. Vecchione G, et al. Fetal sex identification in maternal plasma by means of short tandem repeats on chromosome x. Ann N Y Acad Sci. 2008;1137:148–56.

    Article  PubMed  CAS  Google Scholar 

  27. Fan HC, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105(42):16266–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Chiu RW, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105(51):20458–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Chiu RW, Lo YM. Clinical applications of maternal plasma fetal DNA analysis: translating the fruits of 15 years of research. Clin Chem Lab Med. 2013;51(1):1–8.

    Article  Google Scholar 

  30. Lo YM. Fetal RhD genotyping from maternal plasma. Ann Med. 1999;31(5):308–12.

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, et al. Detection of paternally inherited fetal point mutations for beta-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA. 2005;293(7):843–9.

    Article  PubMed  CAS  Google Scholar 

  32. Leon SA, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    PubMed  CAS  Google Scholar 

  33. Allen D, et al. Role of cell-free plasma DNA as a diagnostic marker for prostate cancer. Ann N Y Acad Sci. 2004;1022:76–80.

    Article  PubMed  CAS  Google Scholar 

  34. Chun FK, et al. Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int. 2006;98(3):544–8.

    Article  PubMed  CAS  Google Scholar 

  35. Schwarzenbach H, et al. Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci. 2008;1137:190–6.

    Article  PubMed  CAS  Google Scholar 

  36. Giacona MB, et al. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  37. Chen X, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res. 1999;5(9):2297–303.

    PubMed  CAS  Google Scholar 

  38. Garcia JM, et al. Extracellular tumor DNA in plasma and overall survival in breast cancer patients. Genes Chromosomes Cancer. 2006;45(7):692–701.

    Article  PubMed  CAS  Google Scholar 

  39. Shinozaki M, et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res. 2007;13(7):2068–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Castells A, et al. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol. 1999;17(2):578–84.

    PubMed  CAS  Google Scholar 

  41. Kopreski MS, et al. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst. 2000;92(11):918–23.

    Article  PubMed  CAS  Google Scholar 

  42. Dianxu F, et al. A prospective study of detection of pancreatic carcinoma by combined plasma K-ras mutations and serum CA19-9 analysis. Pancreas. 2002;25(4):336–41.

    Article  PubMed  Google Scholar 

  43. Higgins MJ, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18(12):3462–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  PubMed  CAS  Google Scholar 

  45. Yachida S, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Taniguchi K, et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res. 2011;17(24):7808–15.

    Article  PubMed  CAS  Google Scholar 

  47. Diaz Jr LA, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Misale S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Branford S. Chronic myeloid leukemia: molecular monitoring in clinical practice. Hematology Am Soc Hematol Educ Program. 2007;2007:376–83.

    Article  Google Scholar 

  50. Yu M, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Campbell PJ, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet. 2008;40(6):722–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Stephens PJ, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462(7276):1005–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. McBride DJ, et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer. 2010;49(11):1062–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Leary RJ, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2(20):20ra14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leary RJ, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ryan BM, et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut. 2003;52(1):101–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Wang S, et al. Potential clinical significance of a plasma-based KRAS mutation analysis in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16(4):1324–30.

    Article  PubMed  CAS  Google Scholar 

  58. Schwarzenbach H, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 2009;15(3):1032–8.

    Article  PubMed  CAS  Google Scholar 

  59. Boddy JL, et al. Prospective study of quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate disease. Clin Cancer Res. 2005;11(4):1394–9.

    Article  PubMed  CAS  Google Scholar 

  60. Schwarzenbach H, et al. Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res. 2009;11(5):R71.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Diehl F, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135(2):489–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Umetani N, et al. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol. 2006;24(26):4270–6.

    Article  PubMed  CAS  Google Scholar 

  63. Umetani N, et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem. 2006;52(6):1062–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ellinger J, et al. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate. 2008;68(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  65. Taback B, Saha S, Hoon DS. Comparative analysis of mesenteric and peripheral blood circulating tumor DNA in colorectal cancer patients. Ann N Y Acad Sci. 2006;1075:197–203.

    Article  PubMed  CAS  Google Scholar 

  66. Clausen FB, et al. Improvement in fetal DNA extraction from maternal plasma. Evaluation of the NucliSens magnetic extraction system and the QIAamp DSP virus kit in comparison with the QIAamp DNA blood mini kit. Prenat Diagn. 2007;27(1):6–10.

    Article  PubMed  CAS  Google Scholar 

  67. Rodriguez de Alba M, et al. Noninvasive prenatal diagnosis of monogenic disorders. Expert Opin Biol Ther. 2012;12 Suppl 1:S171–9.

    Article  PubMed  CAS  Google Scholar 

  68. Legler TJ, et al. Fetal DNA: strategies for optimal recovery. Methods Mol Biol. 2008;444:209–18.

    Article  PubMed  CAS  Google Scholar 

  69. Dressman D, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100(15):8817–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Diehl F, et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods. 2006;3(7):551–9.

    Article  PubMed  CAS  Google Scholar 

  71. Li M, et al. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3(2):95–7.

    Article  PubMed  CAS  Google Scholar 

  72. Rago C, et al. Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res. 2007;67(19):9364–70.

    Article  PubMed  CAS  Google Scholar 

  73. Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat Biotechnol. 1998;16(7):652–6.

    Article  PubMed  CAS  Google Scholar 

  74. Ghadessy FJ, Ong JL, Holliger P. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A. 2001;98(8):4552–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Morley AA, et al. Sensitive and specific measurement of minimal residual disease in acute lymphoblastic leukemia. J Mol Diagn. 2009;11(3):201–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Lam NY, et al. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem. 2003;49(8):1286–91.

    Article  PubMed  CAS  Google Scholar 

  77. Wijeratne S, et al. Cell-free plasma DNA as a prognostic marker in intensive treatment unit patients. Ann N Y Acad Sci. 2004;1022:232–8.

    Article  PubMed  CAS  Google Scholar 

  78. Rainer TH, et al. Plasma beta-globin DNA as a prognostic marker in chest pain patients. Clin Chim Acta. 2006;368(1–2):110–3.

    Article  PubMed  CAS  Google Scholar 

  79. Vasavda N, et al. Circulating DNA: a potential marker of sickle cell crisis. Br J Haematol. 2007;139(2):331–6.

    Article  PubMed  CAS  Google Scholar 

  80. O'Driscoll L, et al. Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics Proteomics. 2008;5(2):94–104.

    PubMed  Google Scholar 

  81. Muthukumar T, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005;353(22):2342–51.

    Article  PubMed  CAS  Google Scholar 

  82. Shalchi Z, et al. Retina-specific mRNA in the assessment of diabetic retinopathy. Ann N Y Acad Sci. 2008;1137:253–7.

    Article  PubMed  CAS  Google Scholar 

  83. Roth C, et al. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12(6):R90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Lawrie CH, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beaver, J.A., Park, B.H. (2015). Circulating Cell-Free DNA for Molecular Diagnostics and Therapeutic Monitoring. In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics