Skip to main content

Transcriptome Sequencing (RNA-Seq)

  • Chapter
  • First Online:
Book cover Genomic Applications in Pathology

Abstract

The transcriptome is the entire assembly of RNA transcripts in a given cell type, including protein coding and noncoding transcripts. Transcriptome sequencing (RNA-Seq) is a recently developed technology that uses high-throughput sequencing approaches (next-generation sequencing or NGS) to determine the sequence of all RNA transcripts in a given specimen. This chapter provides an overview of the development and technical background of transcriptomics and the advantages and limitations of RNA-Seq. This technology has rapidly increased our understanding of gene expression profiles of various cells and tissues and is allowing us to better understand alternative splicing and the functional elements of the genome, and to identify new fusion transcripts in cancer. We also review research and potential clinical applications of RNA-Seq technology in inherited, chronic, neoplastic, and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piétu G, Mariage-Samson R, Fayein NA, Matingou C, Eveno E, Houlgatte R, et al. The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res. 1999;9(2):195–209.

    PubMed  PubMed Central  Google Scholar 

  2. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98 (Review on RNA-Seq).

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Morozova O, Hirst M, Marra MA. Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet. 2009;10:135–51.

    PubMed  CAS  Google Scholar 

  4. Shah SP, Köbel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719–29 (RNA-Seq for fusion transcripts).

    PubMed  CAS  Google Scholar 

  5. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63 (Review on RNA-Seq).

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Collisson EA, Cho RJ, Gray JW. What are we learning from the cancer genome? Nat Rev Clin Oncol. 2012;9(11):621–30 (Review on NGS in cancer).

    PubMed  CAS  Google Scholar 

  7. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70.

    PubMed  CAS  Google Scholar 

  8. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.

    PubMed  CAS  Google Scholar 

  9. Monzon FA, Lyons-Weiler M, Buturovic LJ, Rigl CT, Henner WD, Sciulli CM, Dumur CI, Medeiros F, Anderson GG. Clinical validation of a gene expression test for identification of tumor tissue of origin. J Clin Oncol. 2009;27(15):2503–8.

    PubMed  Google Scholar 

  10. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24:1151–61.

    PubMed  CAS  Google Scholar 

  11. Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011;9:34 (Review on Microarrays and RNA-Seq).

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    PubMed  CAS  Google Scholar 

  13. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133–43.

    PubMed  CAS  Google Scholar 

  14. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    PubMed  CAS  Google Scholar 

  15. Sharov V, Kwong KY, Frank B, Chen E, Hasseman J, Gaspard R, Yu Y, Yang I, Quackenbush J. The limits of log-ratios. BMC Biotechnol. 2004;4:3.

    PubMed  PubMed Central  Google Scholar 

  16. Harbers M, Carninci P. Tag-based approaches for transcriptome research and genome annotation. Nat Methods. 2005;2:495–502.

    PubMed  CAS  Google Scholar 

  17. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306:2242–6.

    PubMed  CAS  Google Scholar 

  18. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Bradford JR, Hey Y, Yates T, Li Y, Pepper SD, Miller CJ. A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics. 2010;11:282.

    PubMed  PubMed Central  Google Scholar 

  20. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46 (Excellent review on sequencing platforms).

    PubMed  CAS  Google Scholar 

  21. Lee H, Tang H. Next generation sequencing technologies and fragment assembly algorithms. Methods Mol Biol. 2012;855:155–74.

    PubMed  CAS  Google Scholar 

  22. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11(5):759–69.

    PubMed  CAS  Google Scholar 

  23. Rothberg JM, Leamon JH. The development and impact of 454 sequencing. Nat Biotechnol. 2008;26(10):1117–24.

    PubMed  CAS  Google Scholar 

  24. Leamon JH, Lee WL, Tartaro KR, Lanza JR, Sarkis GJ, deWinter AD, et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis. 2003;24:3769–77 (Roche 454).

    PubMed  CAS  Google Scholar 

  25. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 2008;18:1051–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    PubMed  CAS  Google Scholar 

  28. Sam LT, Lipson D, Raz T, Cao X, Thompson J, Milos PM, et al. A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS One. 2011;6(3):e17305.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320:106–9.

    PubMed  CAS  Google Scholar 

  30. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    PubMed  CAS  Google Scholar 

  31. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques. 2008;45(1):81–94. doi:10.2144/000112900.

    PubMed  CAS  Google Scholar 

  32. Nagalakshmi U, Waern K, Snyder M. RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol. 2010;Chapter 4:Unit 4.11.1-13.

    Google Scholar 

  33. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, et al. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods. 2010;7:807–12.

    PubMed  CAS  Google Scholar 

  34. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82.

    PubMed  CAS  Google Scholar 

  35. Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR, Alm EJ, et al. Unlocking short read sequencing for metagenomics. PLoS One. 2010;5:e11840.

    PubMed  PubMed Central  Google Scholar 

  36. Falgueras J, Lara AJ, Fernández-Pozo N, Cantón FR, Pérez-Trabado G, Claros MG. SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics. 2010;11:38.

    PubMed  PubMed Central  Google Scholar 

  37. Lassmann T, Hayashizaki Y, Daub CO. TagDust—a program to eliminate artifacts from next generation sequencing data. Bioinformatics. 2009;25:2839–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Kent WJ. BLAT-the BLAST-like alignment tool. Genome Res. 2002;12:656–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-seq. Bioinformatics. 2009;25:1105–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Iyer MK, Chinnaiyan AM. RNA-Seq unleashed. Nat Biotechnol. 2011;29(7):599–600.

    PubMed  CAS  Google Scholar 

  43. Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009;10:637–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods. 2010;7:709–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol. 2009;10:R115.

    PubMed  PubMed Central  Google Scholar 

  46. Nikiforov YE, Yip L, Nikiforova MN. New strategies in diagnosing cancer in thyroid nodules: impact of molecular markers. Clin Cancer Res. 2013;19(9):2283–8. 46.

    PubMed  CAS  Google Scholar 

  47. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, et al. Direct RNA sequencing. Nature. 2009;461:814–8.

    PubMed  CAS  Google Scholar 

  48. Ozsolak F. Third-generation sequencing techniques and applications to drug discovery. Expert Opin Drug Discov. 2012;7(3):231–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Prat A, Ellis MJ, Perou CM. Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol. 2011;9(1):48–57.

    PubMed  PubMed Central  Google Scholar 

  50. Baehner FL, Lee M, Demeure MJ, Bussey KJ, Kiefer JA, Barrett MT. Genomic signatures of cancer: basis for individualized risk assessment, selective staging and therapy. J Surg Oncol. 2011;103(6):563–73.

    PubMed  CAS  Google Scholar 

  51. Chibon F. Cancer gene expression signatures—the rise and fall? Eur J Cancer. 2013;49(8):2000–9.

    PubMed  CAS  Google Scholar 

  52. Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010;20:1890–900.

    Google Scholar 

  53. Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ. Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol. 2012;8(9):518–30. doi:10.1038/nrneurol.2012.156. Epub 2012 Aug 14.

    PubMed  CAS  Google Scholar 

  54. Drew JE. Cellular defense system gene expression profiling of human whole blood: opportunities to predict health benefits in response to diet. Adv Nutr. 2012;3(4):499–505.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Shih B, Watson S, Bayat A. Whole genome and global expression profiling of Dupuytren’s disease: systematic review of current findings and future perspectives. Ann Rheum Dis. 2012;71(9):1440–7. doi:10.1136/annrheumdis-2012-201295. Epub 2012 Jul 6.

    PubMed  CAS  Google Scholar 

  56. Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32:177–95.

    PubMed  PubMed Central  Google Scholar 

  57. Saunders CJ, Miller NA, Soden SE, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.

    PubMed  Google Scholar 

  58. Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews™ [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2013. http://www.ncbi.nlm.nih.gov/books/NBK1116/

  59. Xue Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, Phillips AD, Shaw K, Stenson PD, Cooper DN, Tyler-Smith C, the 1000 Genomes Project Consortium. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet. 2012;91:1022–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics. 2011;5(6):577–622.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Teekakirikul P, Kelly MA, Rehm HL, Lakdawala NK, Funke BH. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J Mol Diagn. 2013;15(2):158–70.

    PubMed  Google Scholar 

  62. Mayer AN, Dimmock DP, Arca MJ, Bick DP, Verbsky JW, Worthey EA, Jacob HJ, Margolis DA. A timely arrival for genomic medicine. Genet Med. 2011;13(3):195–6.

    PubMed  Google Scholar 

  63. Schrijver I, Aziz N, Farkas DH, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn. 2012;14(6):525–40.

    PubMed  CAS  Google Scholar 

  64. Chandrasekharappa SC, Lach FP, Kimble DC, Kamat A, Teer JK, Donovan FX, NISC Comparative Sequencing Program, et al. Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood. 2013;121(22):e138–48.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Costa V, Angelini V, D’Apice L, Mutarelli M, Casanassimi A, et al. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS One. 2011;6(4):e18493.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Freedman ML, Monteiro AN, Gayther SA, et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet. 2011;43:513–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. Eur J Hum Genet. 2013;21(2):134–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet. 2011;27(2):72–9.

    PubMed  CAS  Google Scholar 

  69. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9. doi:10.1038/nature09266.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7):1622–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Monzon FA, Koen TJ. Diagnosis of metastatic neoplasms: molecular approaches for identification of tissue of origin. Arch Pathol Lab Med. 2010;134(2):216–24.

    PubMed  CAS  Google Scholar 

  72. Erlander MG, Ma XJ, Kesty NC, Bao L, Salunga R, Schnabel CA. Performance and clinical evaluation of the 92-gene real-time PCR assay for tumor classification. J Mol Diagn. 2011;13(5):493–503. doi:10.1016/j.jmoldx.2011.04.004. Epub 2011 Jun 25.

    PubMed  PubMed Central  Google Scholar 

  73. Varadhachary G. New strategies for carcinoma of unknown primary: the role of tissue-of-origin molecular profiling. Clin Cancer Res. 2013;19(15):4027–33.

    PubMed  CAS  Google Scholar 

  74. Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82.

    PubMed  PubMed Central  Google Scholar 

  75. Sinicropi D, Qu K, Collin F, Crager M, Liu ML, Pelham RJ, et al. Whole transcriptome RNA-Seq analysis of breast cancer recurrence risk using formalin-fixed paraffin-embedded tumor tissue. PLoS One. 2012;7(7):e40092.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    PubMed  CAS  Google Scholar 

  77. Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol. 2006;155:645–53.

    PubMed  CAS  Google Scholar 

  78. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    PubMed  CAS  Google Scholar 

  79. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458(7234):97–101.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, Rye IH, Nyberg S, Wolf M, Borresen-Dale AL, Kallioniemi O. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol. 2011;12(1):R6.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 2011;17:1646–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3(6):636–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.

    PubMed  CAS  Google Scholar 

  85. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703. doi:10.1056/NEJMoa1006448.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Wen H, Li Y, Malek SN, Kim YC, Xu J, Chen P, et al. New fusion transcripts identified in normal karyotype acute myeloid leukemia. PLoS One. 2012;7(12):e51203. doi:10.1371/journal.pone.0051203. Epub 2012 Dec 12.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Zhou JB, Zhang T, Wang BF, Gao HZ, Xu X. Identification of a novel gene fusion RNF213-SLC26A11 in chronic myeloid leukemia by RNA-Seq. Mol Med Rep. 2013;7(2):591–7. doi:10.3892/mmr.2012.1183.

    PubMed  CAS  Google Scholar 

  88. Kolata G. In leukemia treatment, glimpses of the future. The New York Times. July 8, 2012; A1.

    Google Scholar 

  89. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3:111ra21.

    Google Scholar 

  90. Shah P, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461:809–13.

    PubMed  CAS  Google Scholar 

  91. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    PubMed  CAS  Google Scholar 

  92. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Stevens JB, Horne SD, Abdallah BY, Ye CJ, Heng HH. Chromosomal instability and transcriptome dynamics in cancer. Cancer Metastasis Rev. 2013;32(3–4):391–402.

    PubMed  CAS  Google Scholar 

  94. Dienstmann R, Rodon J, Barretina J, Tabernero J. Genomic medicine frontier in human solid tumors: prospects and challenges. J Clin Oncol. 2013;31(15):1874–84.

    PubMed  Google Scholar 

  95. Mardis ER. Applying next-generation sequencing to pancreatic cancer treatment. Nat Rev Gastroenterol Hepatol. 2012;9:477–86.

    PubMed  CAS  Google Scholar 

  96. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, Ley TJ, Evans WE. The pediatric cancer genome project. Nat Genet. 2012;44(6):619–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Google Scholar 

  98. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One. 2012;7(6):e26284.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14(10):908–34.

    PubMed  CAS  Google Scholar 

  100. Croucher NJ, Thomson NR. Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol. 2010;13(5):619–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Pinto AC, Melo-Barbosa HP, Miyoshi A, Silva A, Azevedo V. Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res. 2011;10(3):1707–18.

    PubMed  CAS  Google Scholar 

  102. Güell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol. 2011;9(9):658–69. doi:10.1038/nrmicro2620.

    PubMed  Google Scholar 

  103. van Vliet AHM. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett. 2010;302:1–7.

    PubMed  Google Scholar 

  104. Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH. Structure and complexity of a bacterial transcriptome. J Bacteriol. 2009;191:3203–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Deutscher MP. Degradation of stable RNA in bacteria. J Biol Chem. 2003;278:45041–4.

    PubMed  CAS  Google Scholar 

  106. Condon C. Maturation and degradation of RNA in bacteria. Curr Opin Microbiol. 2007;10:271–8.

    PubMed  CAS  Google Scholar 

  107. Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A. 2009;106:3976–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Perkins TT, Kingsley RA, Fookes MC, et al. A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet. 2009;5:e1000569.

    PubMed  PubMed Central  Google Scholar 

  109. Pallen MJ, Loman NJ, Penn CW. High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. Curr Opin Microbiol. 2012;13:625–31.

    Google Scholar 

  110. Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet. 2010;11:9–16.

    PubMed  CAS  Google Scholar 

  111. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 2009;459(7249):950–6. doi:10.1038/nature08080. Epub 2009 May 17.

    PubMed  CAS  Google Scholar 

  112. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464:250–5.

    PubMed  CAS  Google Scholar 

  113. Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 2012;10:618–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daniel, S., Paniz-Mondolfi, A., Monzon, F.A. (2015). Transcriptome Sequencing (RNA-Seq). In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics