Skip to main content

Emerging Next-Generation Sequencing Technologies

  • Chapter
  • First Online:

Abstract

An ideal sequencing instrument should detect all types of genomic variation including structural [single nucleotide polymorphisms (SNP’s), indels, copy number variation, inversions, chromosomal rearrangements], epigenomic, and transcriptional. Long read lengths are required to enable efficient genomic assembly and accurate phasing, and the detection method must produce highly accurate base calls to minimize errors and reduce costly iterative sequencing. Finally, the system should be inexpensive, be easy to maintain and operate, and require short run times. Although “ideal” sequencing instruments do not currently exist, engineers, physicists, and biologists in both industry and academia are actively working to solve the major technical challenges facing the development of new sequencing technologies. This chapter provides a broad overview of emerging new sequencing technologies including single-molecule and nanopore approaches. Potential applications in nucleic acid analysis which will be enabled by these technological advances are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Walsh PS, Erlich HA, Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1992;1:241–50.

    Article  PubMed  CAS  Google Scholar 

  2. Cha RS, Thilly WG. Specificity, efficiency, and fidelity of PCR. PCR Methods Appl. 1993;3:S18–29.

    Article  PubMed  CAS  Google Scholar 

  3. Shuldiner AR, Nirula A, Roth J. Hybrid DNA artifact from PCR of closely related target sequences. Nucleic Acids Res. 1989;17:4409.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Mutter GL, Boynton KA. PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res. 1995;23:1411–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Braslavsky I, Hebert B, Kartalov E, Quake SR. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A. 2003;100:3960–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake SR, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z. Single-molecule DNA sequencing of a viral genome. Science. 2008;320:106–9.

    Article  PubMed  CAS  Google Scholar 

  7. Pushkarev D, Neff NF, Quake SR. Single-molecule sequencing of an individual human genome. Nat Biotechnol. 2009;27:847–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, Pavlovic A, Morgan AA, Pushkarev D, Neff NF, Hudgins L, Gong L, Hodges LM, Berlin DS, Thorn CF, Sangkuhl K, Hebert JM, Woon M, Sagreiya H, Whaley R, Knowles JW, Chou MF, Thakuria JV, Rosenbaum AM, Zaranek AW, Church GM, Greely HT, Quake SR, Altman RB. Clinical assessment incorporating a personal genome. Lancet. 2010;375:1525–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM. Direct RNA sequencing. Nature. 2009;461:814–8.

    Article  PubMed  CAS  Google Scholar 

  10. Goren A, Ozsolak F, Shoresh N, Ku M, Adli M, Hart C, Gymrek M, Zuk O, Regev A, Milos PM, Bernstein BE. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods. 2010;7:47–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299:682–6.

    Article  PubMed  CAS  Google Scholar 

  12. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  PubMed  CAS  Google Scholar 

  13. Coupland P, Chandra T, Quail M, Reik W, Swerdlow H. Direct sequencing of small genomes on the Pacific Biosciences RS without library preparation. Biotechniques. 2012;53:365–72.

    Article  PubMed  CAS  Google Scholar 

  14. Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, Pham TT, Otto GA, Foquet M, Turner SW. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A. 2008;105:1176–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics. 2012;13:375.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, McCalmon S, Hagerman RJ, Tassone F, Hagerman PJ. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res. 2013;23(1):121–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7:461–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19:959–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, Feng Z, Losic B, Mahajan MC, Jabado OJ, Deikus G, Clark TA, Luong K, Murray IA, Davis BM, Keren-Paz A, Chess A, Roberts RJ, Korlach J, Turner SW, Kumar V, Waldor MK, Schadt EE. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol. 2012;30:1232–9.

    Article  PubMed  CAS  Google Scholar 

  20. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med. 2011;365:709–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Pennisi E. Genomics. Semiconductors inspire new sequencing technologies. Science. 2010;327:1190.

    Article  PubMed  CAS  Google Scholar 

  23. Neely RK, Deen J, Hofkens J. Optical mapping of DNA: single-molecule-based methods for mapping genomes. Biopolymers. 2011;95:298–311.

    Article  PubMed  CAS  Google Scholar 

  24. Schmid CW, Manning JE, Davidson N. Inverted repeat sequences in the Drosophila genome. Cell. 1975;5:159–72.

    Article  PubMed  CAS  Google Scholar 

  25. Deininger PL, Schmid CW. An electron microscope study of the DNA sequence organization of the human genome. J Mol Biol. 1976;106:773–90.

    Article  PubMed  CAS  Google Scholar 

  26. Bell DC, Thomas WK, Murtagh KM, Dionne CA, Graham AC, Anderson JE, Glover WR. DNA base identification by electron microscopy. Microsc Microanal. 2012;18:1049–53.

    Article  PubMed  CAS  Google Scholar 

  27. Teague B, Waterman MS, Goldstein S, Potamousis K, Zhou S, Reslewic S, Sarkar D, Valouev A, Churas C, Kidd JM, Kohn S, Runnheim R, Lamers C, Forrest D, Newton MA, Eichler EE, Kent-First M, Surti U, Livny M, Schwartz DC. High-resolution human genome structure by single-molecule analysis. Proc Natl Acad Sci U S A. 2010;107:10848–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Zhou S, Wei F, Nguyen J, Bechner M, Potamousis K, Goldstein S, Pape L, Mehan MR, Churas C, Pasternak S, Forrest DK, Wise R, Ware D, Wing RA, Waterman MS, Livny M, Schwartz DC. A single molecule scaffold for the maize genome. PLoS Genet. 2009;5:e1000711.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A. 1996;93:13770–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26:1146–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wu HC, Astier Y, Maglia G, Mikhailova E, Bayley H. Protein nanopores with covalently attached molecular adapters. J Am Chem Soc. 2007;129:16142–8.

    Article  PubMed  CAS  Google Scholar 

  32. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A. 2010;107:16060–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–70.

    Article  PubMed  CAS  Google Scholar 

  34. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30:349–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M. Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol. 2012;30:344–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Lieberman KR, Cherf GM, Doody MJ, Olasagasti F, Kolodji Y, Akeson M. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J Am Chem Soc. 2010;132:17961–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kang XF, Cheley S, Rice-Ficht AC, Bayley H. A storable encapsulated bilayer chip containing a single protein nanopore. J Am Chem Soc. 2007;129:4701–5.

    Article  PubMed  CAS  Google Scholar 

  38. Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat Methods. 2012;9:487–92.

    Article  PubMed  CAS  Google Scholar 

  39. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Graphene as a subnanometre trans-electrode membrane. Nature. 2010;467:190–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Liu H, He J, Tang J, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S, Nuckolls C. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science. 2010;327:64–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Balagurusamy VS, Weinger P, Ling XS. Detection of DNA hybridizations using solid-state nanopores. Nanotechnology. 2010;21:335102.

    Article  PubMed  Google Scholar 

  42. Kowalczyk SW, Hall AR, Dekker C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 2010;10:324–8.

    Article  PubMed  CAS  Google Scholar 

  43. Thompson JF, Oliver JS. Mapping and sequencing DNA using nanopores and nanodetectors. Electrophoresis. 2012;33:3429–36.

    Article  PubMed  CAS  Google Scholar 

  44. Ohshiro T, Matsubara K, Tsutsui M, Furuhashi M, Taniguchi M, Kawai T. Single-molecule electrical random resequencing of DNA and RNA. Sci Rep. 2012;2:501.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ohshiro T, Umezawa Y. Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases. Proc Natl Acad Sci U S A. 2006;103:10–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Min SK, Kim WY, Cho Y, Kim KS. Fast DNA sequencing with a graphene-based nanochannel device. Nat Nanotechnol. 2011;6:162–5.

    Article  PubMed  CAS  Google Scholar 

  47. Harrer S, Ahmed S, Afzali-Ardakani A, Luan B, Waggoner PS, Shao X, Peng H, Goldfarb DL, Martyna GJ, Rossnagel SM, Deligianni L, Stolovitzky GA. Electrochemical characterization of thin film electrodes toward developing a DNA transistor. Langmuir. 2010;26:19191–8.

    Article  PubMed  CAS  Google Scholar 

  48. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes. 2010;1:38–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, M.W. (2015). Emerging Next-Generation Sequencing Technologies. In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics