Skip to main content

Clinical Information Systems in the Era of Personalized Medicine

  • Chapter
  • First Online:
Book cover Genomic Applications in Pathology
  • 2152 Accesses

Abstract

Scientific and technical advances continue to further our understanding of how genetic alterations affect human health and the development of disease. Integrating genomic findings in the delivery of patient care represents and exciting and evolving area of medicine. The capacity to interpret and leverage this new source of information, and to do so in a broad and high-throughput manner, via clinical information systems remains a key challenge. In this chapter, we focus on common areas that influence effective use and development of clinical information systems to support the use of genomic data in health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irani Z, Love P. Evaluating information systems. Burlington, MA: Elsevier Ltd.; 2008.

    Google Scholar 

  2. Centers for Medicare & Medicaid Services. Clinical Laboratory Improvement Amendments. Retrieved from http://www.cms.gov; 2014.

  3. GenoLogics—A LIMS for the Next-Gen Omics lab. Retrieved from http://www.genologics.com; 2014.

  4. Sapio Sciences—The most configurable and flexible LIMS software available. Retrieved from http://www.sapiosciences.com; 2014.

  5. Gale K. Laboratory and the art of enterprise integration. Healthc Financ Manage. 2009;63(10):36–8.

    PubMed  Google Scholar 

  6. (HL7), H.L.S.I. Clinical genomics; 2013.

    Google Scholar 

  7. College of American Pathologists Molecular Pathology Checklist. Retrieved from http://www.cap.org; 2014.

  8. (HGVS), H.G.V.S. Standards—definitions, symbols, nucleotides, codons, amino acids (v2.0); 2013.

    Google Scholar 

  9. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  10. Harrow J, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Genome Project. VCF (Variant Call Format) version 4.0; 2011.

    Google Scholar 

  12. (HL7), H.L.S.I. HL7 Version 3 Standard: Clinical Genomics; Pedigree, Release 1; 2013.

    Google Scholar 

  13. Lebo RV, Grody WW. Testing and reporting ACMG cystic fibrosis mutation panel results. Genet Test. 2007;11(1):11–31.

    Article  PubMed  CAS  Google Scholar 

  14. IRB Guidebook: Chapter V Biomedical and Behavioral Research: An Overview. Retrieved from http://www.hhs.gov; 2014.

  15. Regenstrief Institute. Logical Observation Identifiers Names and Codes (LOINC); 2013.

    Google Scholar 

  16. Bosca D, Marco L, Burriel V, Jaijo T, Millán JM, Levin A, Pastor O, Robles M, Maldonado JA. Genetic testing information standardization in HL7 CDA and ISO13606. Stud Health Technol Inform. 2013;192:338–42.

    PubMed  Google Scholar 

  17. Chute CG, Kohane IS. Genomic medicine, health information technology, and patient care. JAMA. 2013;309(14):1467–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. ASTM. Portable Document Format-Healthcare (PDF) a best practices guide. ASTM AIIMASTM—BP-01-08; 2013.

    Google Scholar 

  19. Hoffman MA. The genome-enabled electronic medical record. J Biomed Inform. 2007;40(1):44–6.

    Article  PubMed  CAS  Google Scholar 

  20. Garg AX, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.

    Article  PubMed  CAS  Google Scholar 

  21. Scheuner MT, et al. Are electronic health records ready for genomic medicine? Genet Med. 2009;11(7):510–7.

    Article  PubMed  Google Scholar 

  22. Downing GJ, et al. Information management to enable personalized medicine: stakeholder roles in building clinical decision support. BMC Med Inform Decis Mak. 2009;9:44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scheuner MT, Sieverding P, Shekelle PG. Delivery of genomic medicine for common chronic adult diseases: a systematic review. JAMA. 2008;299(11):1320–34.

    Article  PubMed  CAS  Google Scholar 

  24. Ronquillo JG. How the electronic health record will change the future of health care. Yale J Biol Med. 2012;85(3):379–86.

    PubMed  PubMed Central  Google Scholar 

  25. Lucassen A, Hall A. Consent and confidentiality in clinical genetic practice: guidance on genetic testing and sharing genetic information. Clin Med. 2012;12(1):5–6.

    Article  PubMed  Google Scholar 

  26. Ayuso C, et al. Informed consent for whole-genome sequencing studies in the clinical setting. Proposed recommendations on essential content and process. Eur J Hum Genet. 2013;21(10):1054–9.

    Article  PubMed  Google Scholar 

  27. Bunnik EM, et al. The new genetics and informed consent: differentiating choice to preserve autonomy. Bioethics. 2013;27(6):348–55.

    Article  PubMed  Google Scholar 

  28. Hinton Jr RB. The family history: reemergence of an established tool. Crit Care Nurs Clin North Am. 2008;20(2):149–58. v.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gulley ML, et al. Clinical laboratory reports in molecular pathology. Arch Pathol Lab Med. 2007;131(6):852–63.

    PubMed  CAS  Google Scholar 

  30. Ullman-Cullere MH, Mathew JP. Emerging landscape of genomics in the Electronic Health Record for personalized medicine. Hum Mutat. 2011;32(5):512–6.

    Article  PubMed  Google Scholar 

  31. Naidoo N, et al. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics. 2011;5(6):577–622.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Aquilante CL. Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther. 2010;8(3):359–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Huang C, Florez JC. Pharmacogenetics in type 2 diabetes: potential implications for clinical practice. Genome Med. 2011;3(11):76.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wilcox AR, Neri PM, Volk LA, Newmark LP, Clark EH, Babb LJ, Varugheese M, Aronson SJ, Rehm HL, Bates DW. A novel clinician interface to improve clinician access to up-to-date genetic results. J Am Med Inform Assoc. 2014;21(e1):e117–21. doi:10.1136/amiajnl-2013-001965.

    Article  PubMed  Google Scholar 

  35. Wilkins BS, Clark DM. Making the most of bone marrow trephine biopsy. Histopathology. 2009;55(6):631–40.

    Article  PubMed  Google Scholar 

  36. Cagle PT, et al. Template for reporting results of biomarker testing of specimens from patients with non-small cell carcinoma of the lung. Arch Pathol Lab Med. 2014;138(2):171–4.

    Article  PubMed  Google Scholar 

  37. Bartley AN, et al. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the colon and rectum. Arch Pathol Lab Med. 2014;138(2):166–70.

    Article  PubMed  Google Scholar 

  38. Richards CS, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10(4):294–300.

    Article  PubMed  CAS  Google Scholar 

  39. Kohane IS, Churchill SE, Murphy SN. A translational engine at the national scale: informatics for integrating biology and the bedside. J Am Med Inform Assoc. 2012;19(2):181–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Masys DR, et al. Technical desiderata for the integration of genomic data into Electronic Health Records. J Biomed Inform. 2012;45(3):419–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murphy S, Churchill S, Bry L, Chueh H, Weiss S, Lazarus R, Zeng Q, Dubey A, Gainer V, Mendis M, Glaser J, Kohane I. Instrumenting the health care enterprise for discovery research in the genomic era. Genome Res. 2009;19(9):1675–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Aronson SJ, Clark EH, Babb LJ, Baxter S, Farwell LM, Funke BH, Hernandez AL, Joshi VA, Lyon E, Parthum AR, Russell FJ, Varugheese M, Venman TC, Rehm HL. The GeneInsight Suite: a platform to support laboratory and provider use of DNA-based genetic testing. Hum Mutat. 2011;32(5):532–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Welch BM, Kawamoto K. Clinical decision support for genetically guided personalized medicine: a systematic review. J Am Med Inform Assoc. 2013;20(2):388–400.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Belle A, Kon MA, Najarian K. Biomedical informatics for computer-aided decision support systems: a survey. ScientificWorldJournal. 2013;2013:769639.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peterson JF, et al. Electronic health record design and implementation for pharmacogenomics: a local perspective. Genet Med. 2013;15(10):833–41.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH, Delaney JT, Bowton E, Brothers K, Johnson K, Crawford DC, Schildcrout J, Masys DR, Dilks HH, Wilke RA, Clayton EW, Shultz E, Laposata M, McPherson J, Jirjis JN, Roden DM. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther. 2012;92(1):87–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Tural C, et al. Clinical utility of HIV-1 genotyping and expert advice: the Havana trial. AIDS. 2002;16(2):209–18.

    Article  PubMed  Google Scholar 

  48. Pathak J, et al. Evaluating phenotypic data elements for genetics and epidemiological research: experiences from the eMERGE and PhenX network projects. AMIA Summits Transl Sci Proc. 2011;2011:41–5.

    PubMed  PubMed Central  Google Scholar 

  49. Pathak J, et al. Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience. J Am Med Inform Assoc. 2011;18(4):376–86.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nowak, J., Bry, L. (2015). Clinical Information Systems in the Era of Personalized Medicine. In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics