Skip to main content

Siderophore Efficacy of Fluorescent Pseudomonades Affecting Labeled Iron (59Fe) Uptake by Wheat (Triticum aestivum L.) Genotypes Differing in Fe Efficiency

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses

Abstract

Plant growth promoting rhizobacteria (PGPR) may enhance iron (Fe) availability by producing some organic products including siderophores. Accordingly, the potential of fluorescent pseudomonades (selected from among 201 isolated strains) to produce auxin (IAA) and siderophore (Sid) and their effects on 59Fe uptake by two different wheat genotypes (Tabasi and Yavarous) were determined. High siderophore producing super-strains of Pseudomonas putida, P. fluorescens, and P. aeruginosa were isolated from wheat rhizosphere and their potential for siderophore production was evaluated by the chrome azurol-S assay (CAS blue agar). P. putida, the most efficient strain, produced a siderophore complex with 76 % efficiency compared with the standard siderophore, siderophore desferrioxamine B (DFOB). Bacterial siderophores significantly and differently affected the uptake of labeled 59Fe by wheat genotypes (Tabasi the more efficient cultivar) indicating that there may be differences in the chemical structure of the siderophores. Siderophore effectiveness on Fe availability was in the following order: Sid-DFOB> Sid-putida> Sid-fluorescens> Sid-areuginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR, Miransari M (2010) Plant growth promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantarum 32:281–288

    Article  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Balali M, Malakouti MJ, Mashayekhi MH, Khademi Z (1998) The effects of micronutrients on yield increasing and determination of their critical levels in irrigated wheat farms of Iran. Iranian J Soil Water Res 12:43–51

    Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth: perpectives for controlled use of microorganism in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Maheshwari K, Dubey R, Arora D, Bajpai V, Kang S (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  • Boven GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Cakmakci R, Donmez F, Aydin A, Sahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil condition. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Cesco S, Nikolic M, Römheld V, Varanini Z, Pinton R (2002) Uptake of 59Fe from soluble 59Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121–128

    Article  CAS  Google Scholar 

  • Chen H, Zhou W, Zhu K, Zhan H, Jiang M (2004) Sorption of ionizable organic compounds on HDTMA-modified loess soil. Sci Total Environ 326:217–223

    Google Scholar 

  • Cline GR, Powel PE, Szansizlo PJ, Reid CP (1982) Comparison of the abilities of hydroxamic acid, synthetic and other natural organic acids to chelate iron and other ions in nutrient solution. Soil Sci Soc Am J 46:1158–1164

    Article  CAS  Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:680–685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Daei G, Ardakani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  PubMed  CAS  Google Scholar 

  • Fernández V, Winkelmann G (2005) The determination of ferric iron in plants by HPLC using the microbial iron chelator desferrioxamine E. Biometals 18:53–62

    Article  PubMed  CAS  Google Scholar 

  • Fernandez V, Ebert G, Winkelmann G (2005) The use of microbial siderophore for foliar iron application studies. Plant Soil 272:245–252

    Article  CAS  Google Scholar 

  • Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Gardner JM, Chandler JL, Feldman AW (1984) Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103–113

    Article  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hansen NC, Jolley VD, Brown JC (1995) Clipping foliage differentially affects phytosiderophore release by two wheat cultivars. Agronomy Journal 87:1060–1063

    Article  CAS  Google Scholar 

  • Howie W, Echandi E (1983) Rhizobacteria: influence of cultivar and soil type on plant growth and yield of potato. Soil Biol Biochem 15:127–132

    Article  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Asadi Rahmani H, Rasuli Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  PubMed  CAS  Google Scholar 

  • Jin C, Li G, Yu X, Zheng S (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson GA, Lopez A, Foster NV (2002) Reduction and transport of Fe from siderophores. Plant Soil 241:27–33

    Article  CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1988) Involvement of bacterial siderophores in the remedy of lime-induced chlorosis in peanut. Soil Sci Soc Am J 52:1032–1037

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of phycocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Scroth M (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Lalande R, Bissonnette N, Coutlee D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • Latour X, Delorme S, Mirleau P, Lemanceau P (2010) Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. In: Lichtfouse E et al. (eds) Sustainable agriculture, 285 Springer Science+Business Media B.V.—EDP Sciences 2009. doi 10.1007/978-90-481-2666-8_19. Reprinted with permission of EDP Sciences from Latour et al. (2003) Agronomie, vol 23. pp 397–405. doi:10.1051/agro:2003015

  • Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Marschner H, Romheld V, Kissel V (1986) Different strategies in higher-plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorscent pigment of Pseudomonas fluorescens: biosynthsis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    Article  CAS  Google Scholar 

  • Milagres AMF, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modificaction of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Ann Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Patten CL, Glick B (2002) Role of Pseudomanas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rasouli-Sadaghiani MH, Khavazi K, Rahimian H, Malakouti MJ (2005) The efficiency of siderophore production of native fluorescent pseudomonads in Iran. Proceeding of 9th iranian soil science congress, 25–29 August, Tehran, Iran (In Persian)

    Google Scholar 

  • Rasouli-Sadaghiani MH, Malakouti MJ, Khavazi K (2007) Evaluation of phytosiderophore release from root of strategy II plants in iron and zinc deficiency condition. Proceeding of 10th iranian soil science congress, 26–28 August, Karaj, Iran (In Persian)

    Google Scholar 

  • Reid CP, Crowley DE, Kim HJ, Powel PE, Szansizlo PJ (1984) Utilization of iron by oat when supplied as ferrated hydroxamate siderophore. J Plant Nutr 7:437–447

    Article  CAS  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition from: advances in agronomy. In: Sparks DL (ed) Advances in agronomy, vol 99. pp 83–225

    Google Scholar 

  • Romheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rroco ER, Kosegarten H, Harizaj F, Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iron to sorgum and rape. Eur J Agron 19:487–493

    Article  CAS  Google Scholar 

  • SAS Institute Inc (1988) SAS/STAT user’s guide. Version 6, 4th edn. Statistical Analysis Institute Inc., Cary North Carolina

    Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Annal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sharam A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. Strain GRP3 influences iron acquisition in mung bean. Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Shenker M, Hader Y, Chen Y (1999) Kinetics of iron complexing and exchange in solutions by rhizoferrin, a fungal siderophore. Soil Sci Soc Am J 63:1681–1687

    Article  CAS  Google Scholar 

  • Sonmez S, Kaplan M (2004) Comparison of various analysis methods for determination of iron chlorosis in apple trees. J Plant Nutr 27:2007–2018

    Article  CAS  Google Scholar 

  • Tolay I, Erenoglu B, Romheld V, Braun HJ, Cakmak I (2001) Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies. J Exp Bot 52:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Romheld V, Marschner H (1994a) Is the release of phytosiderophores in zinc deficient wheat plants’ response to impaired iron utilization? Physiologiae Plantarum 92:493–500

    Article  CAS  Google Scholar 

  • Walter A, Romheld V, Marschner H, Crowley DE (1994b) Iron nutrition of cucumber and maize: effect of Pseudomonas putida YC3 and its siderophore. Soil Biol Biochem 26:1023–1031

    Article  CAS  Google Scholar 

  • Welch RM, Allaway WH, House WA, Kubota J (1991) Geographic distribution of trace element problems. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, SSSA Book Series No.4. Madison, WI, pp 31-57

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Drechsel H (1997) Microbial Siderophores. In: Kleinkauf H, Von Döhren H (eds) Products of secondary metabolism, vol 7. Wiley-VCH, Weinheim, Germany, pp 200–246

    Google Scholar 

  • Yehuda Z, Shenker M, Romheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112:1273–1280

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiologiae Plantarum 33:145–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MirHassan Rasouli-Sadaghiani or Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rasouli-Sadaghiani, M., Malakouti, M.J., Khavazi, K., Miransari, M. (2014). Siderophore Efficacy of Fluorescent Pseudomonades Affecting Labeled Iron (59Fe) Uptake by Wheat (Triticum aestivum L.) Genotypes Differing in Fe Efficiency. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_7

Download citation

Publish with us

Policies and ethics